Nudges to promote Self-regulation in the use of Social Networks: Initial Implications of an Experiment

Authors

DOI:

https://doi.org/10.5753/isys.2022.2275

Keywords:

Social Networks, Self-regulation, Nudges

Abstract

Considering that, increasingly, young people have been more likely to use social networks in excess, it is necessary to propose solutions that support the balanced use of such tools. Choice architecture consists of interventions, known as nudges, to influence people’s behavior and decisions. In order to support the people’s self-regulation process, this work presents an experiment by which, based on a sample of 257 participants, two nudges, based on social nudges and framing, were evaluated in order to influence the decision to reduce the use of social networks. Through logistic regression, the results indicate that there is an influence of social norms. Framing, however, did not present significant results. This work also propose a prototype of an application as a background to use the nudges.

Downloads

Download data is not yet available.

References

Allcott, H. (2011). Social norms and energy conservation. Journal of public Economics, 95(9-10):1082–1095.

Ariely, D. and Jones, S. (2008). Predictably irrational. Harper Audio New York, NY.

Ávila, F., Bianchi, A. M., and Motta, L. T. (2015). Guia de economia comportamental e experimental. EconomiaComportamental. org.

Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational behavior and human decision processes, 50(2):248–287.

Bank, W. (2015). World development report 2015: Mind, society, and behavior. The World Bank.

Beck, J. S. and Beck, A. T. (1995). Cognitive therapy: Basics and beyond. Number Sirsi) i9780898628470. Guilford press New York.

Berryman, C., Ferguson, C. J., and Negy, C. (2018). Social media use and mental health among young adults. Psychiatric quarterly, 89(2):307–314.

Bravo-Lillo, C., Komanduri, S., Cranor, L. F., Reeder, R. W., Sleeper, M., Downs, J., and Schechter, S. (2013). Your attention please: Designing security-decision uis to make genuine risks harder to ignore. In Proceedings of the Ninth Symposium on Usable Privacy and Security, pages 1–12.

Brown, T. (2020). Design Thinking: uma metodologia poderosa para decretar o fim das velhas ideias. Alta Books.

Caraban, A., Karapanos, E., Gonçalves, D., and Campos, P. (2019). 23 ways to nudge: A review of technology-mediated nudging in human-computer interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–15.

CGI.BR (2018). TIC Kids Online Brasil 2018: Pesquisa sobre o uso da Internet por crianças e adolescentes. Comitê Gestor da Internet no Brasil.

Cialdini, R. B. and James, L. (2009). Influence: Science and practice, volume 4. Pearson education Boston, MA.

Cunha, J. A., Aguiar, Y. P. C., Pontes, J., and da Silva, M. (2020). Como influenciar decisões em ambientes digitais através de nudges? um mapeamento sistemático da literatura. In Anais do V Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software, pages 41–50. SBC.

da Cunha, J. A. O. and Aguiar, Y. P. C. (2020). Reflections on the role of nudges in human-computer interaction for behavior change. In Anais do XIX Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais, pages 478–483. SBC.

Dolan, P., Hallsworth, M., Halpern, D., King, D., and Vlaev, I. (2010). Mindspace: influencing behaviour for public policy.

Ekrnan, P. and Cole, J. (1972). Universals and cultural differences in facial expressions of emotions. J, Cole, pages 207–283.

Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol., 59:255–278.

Fogg, B. J. (2002). Persuasive technology: using computers to change what we think and do. Ubiquity, 2002(December):2.

Galindo, N. M., Sá, G. G. d. M., Barbosa, L. U., Pereira, J. d. C. N., Henriques, A. H. B., and Barros, L. M. (2020). Covid-19 e tecnologia digital: aplicativos móveis disponíveis para download em smartphones. Texto & Contexto-Enfermagem, 29.

Grau, V. and Whitebread, D. (2012). Self and social regulation of learning during collaborative activities in the classroom: The interplay of individual and group cognition. Learning and Instruction, 22(6):401–412.

Harbach, M., Hettig, M., Weber, S., and Smith, M. (2014). Using personal examples to improve risk communication for security & privacy decisions. In Proceedings of the SIGCHI conference on human factors in computing systems, pages 2647–2656.

Hiniker, A., Hong, S., Kohno, T., and Kientz, J. A. (2016). Mytime: designing and evaluating an intervention for smartphone non-use. In Proceedings of the 2016 CHI conference on human factors in computing systems, pages 4746–4757.

Hutchinson, J. M. and Gigerenzer, G. (2005). Simple heuristics and rules of thumb: Where psychologists and behavioural biologists might meet. Behavioural processes, 69(2):97–124.

Jameson, A., Berendt, B., Gabrielli, S., Cena, F., Gena, C., Vernero, F., and Reinecke, K. (2014). Choice architecture for human-computer interaction. Foundations and Trends in Human-Computer Interaction, 7(1–2):1–235.

Johnson, E. J., Shu, S. B., Dellaert, B. G., Fox, C., Goldstein, D. G., Häubl, G., Larrick, R. P., Payne, J. W., Peters, E., Schkade, D., et al. (2012). Beyond nudges: Tools of a choice architecture. Marketing Letters, 23(2):487–504.

Kahneman, D. and Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In Handbook of the fundamentals of financial decision making: Part I, pages 99–127. World Scientific.

Keeney, R. L. (1982). Decision analysis: an overview. Operations research, 30(5):803– 838.

Kemp, S. (2021). Digital 2021: Global overview report.

Khoury, J. M., de Freitas, A. A. C., Roque, M. A. V., Albuquerque, M. R., das Neves, M. d. C. L., and Garcia, F. D. (2017). Assessment of the accuracy of a new tool for the screening of smartphone addiction. PloS one, 12(5):e0176924.

Ko, M., Yang, S., Lee, J., Heizmann, C., Jeong, J., Lee, U., Shin, D., Yatani, K., Song, J., and Chung, K.-M. (2015). Nugu: A group-based intervention app for improving selfregulation of limiting smartphone use. In Proceedings of the 18th ACM conference on computer supported cooperative work & social computing, pages 1235–1245.

Levin, I. P. and Gaeth, G. J. (1988). How consumers are affected by the framing of attribute information before and after consuming the product. Journal of consumer research, 15(3):374–378.

Levin, I. P., Schneider, S. L., and Gaeth, G. J. (1998). All frames are not created equal: A typology and critical analysis of framing effects. Organizational behavior and human decision processes, 76(2):149–188.

Löchtefeld, M., Böhmer, M., and Ganev, L. (2013). Appdetox: helping users with mobile app addiction. In Proceedings of the 12th international conference on mobile and ubiquitous multimedia, pages 1–2.

Mandel, N. and Johnson, E. J. (2002). When web pages influence choice: Effects of visual primes on experts and novices. Journal of consumer research, 29(2):235–245.

Masaki, H., Shibata, K., Hoshino, S., Ishihama, T., Saito, N., and Yatani, K. (2020). Exploring nudge designs to help adolescent sns users avoid privacy and safety threats. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–11.

Nyamadi, M., Boateng, R., and Asamenu, I. (2020). Smartphone addictions: A review of themes, theories and future research directions. In Proceedings of the 53rd Hawaii international conference on system sciences.

Okeke, F., Sobolev, M., Dell, N., and Estrin, D. (2018). Good vibrations: can a digital nudge reduce digital overload? In Proceedings of the 20th international conference on human-computer interaction with mobile devices and services, pages 1–12.

Protégeles (2005). Seguridad infantil y costumbres de los menores en la telefonia móvil.

Purohit, A. K., Barclay, L., and Holzer, A. (2020). Designing for digital detox: Making social media less addictive with digital nudges. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–9.

Schibalski, J. V., Mueller, M., Ajdacic-Gross, V., Vetter, S., Rodgers, S., Oexle, N., Corrigan, P. W., Roessler, W., and Ruesch, N. (2017). Stigma-related stress, shame and avoidant coping reactions among members of the general population with elevated symptom levels. Comprehensive Psychiatry, 74:224–230.

Simon, H. A. (1955). A behavioral model of rational choice. The quarterly journal of economics, 69(1):99–118.

Smetaniuk, P. et al. (2014). A preliminary investigation into the prevalence and prediction of problematic cell phone use. Journal of behavioral addictions, 3(1):41–53.

Thaler, R. H. and Sunstein, C. R. (2008). Nudge. Yale University Press.

Tomaél, M. I., Alcará, A. R., and Di Chiara, I. G. (2005). Das redes sociais à inovação. Ciência da informação, 34:93–104.

Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. science, 185(4157):1124–1131.

Twenge, J. M. and Campbell, W. K. (2019). Media use is linked to lower psychological well-being: Evidence from three datasets. Psychiatric Quarterly, 90(2):311–331.

Weinmann, M., Schneider, C., and Vom Brocke, J. (2016). Digital nudging. Business & Information Systems Engineering, 58(6):433–436.

Wilson, D. K., Kaplan, R. M., and Schneiderman, L. J. (1987). Framing of decisions and selections of alternatives in health care. Social Behaviour, 2(1):51–59.

Wolters, C. A. and Benzon, M. B. (2013). Assessing and predicting college students’ use of strategies for the self-regulation of motivation. The Journal of Experimental Education, 81(2):199–221.

Published

2022-10-18

How to Cite

Oliveira Guedes da Cunha, J. A., Duarte de Araújo, I., & dos Santos Gomes, V. H. (2022). Nudges to promote Self-regulation in the use of Social Networks: Initial Implications of an Experiment. ISys - Brazilian Journal of Information Systems, 15(1), 16:1–16:17. https://doi.org/10.5753/isys.2022.2275

Issue

Section

Special issues articles

Most read articles by the same author(s)