Identification of suspected fraud bids through audit trails

Authors

  • Lucas L. Costa Universidade Federal de Minas Gerais (UFMG)
  • Clara A. Bacha Universidade Federal de Minas Gerais (UFMG)
  • Gabriel P. Oliveira Universidade Federal de Minas Gerais (UFMG)
  • Mariana O. Silva Universidade Federal de Minas Gerais (UFMG)
  • Matheus C. Texeira Universidade Federal de Minas Gerais (UFMG)
  • Michele A. Brandão Universidade Federal de Minas Gerais (UFMG) / Instituto Federal de Minas Gerais (IFMG)
  • Anisio Lacerda Universidade Federal de Minas Gerais (UFMG)
  • Gisele L. Pappa Universidade Federal de Minas Gerais (UFMG)

DOI:

https://doi.org/10.5753/isys.2023.3013

Keywords:

Bidding fraud, Social network analysis, Audit trails

Abstract

Different information technologies help to promote government transparency, made possible by agreements promoting and encouraging open data. Public bids are a specific type of this data, made available by the Brazilian government, and aim to ensure transparency and free competition between bidders. However, auditing for irregularities is a non-trivial task due to the massive volume of data and the reduced number of specialists. Thus, this work proposes a methodology based on concepts of audit trails and social networks to create fraud alerts in bids. We also propose an approach to ranking bids according to these tracks. The results reveal that our proposal helps in the fight against corruption by being able to identify suspicious bids.

Downloads

Download data is not yet available.

References

Abidi, W. U. H. et al. (2021). Real-time shill bidding fraud detection empowered with fussed machine learning. IEEE Access, 9:113612–113621.

Andrade, P. H. M. A. et al. (2020). Auditing government purchases with a multicriteria anomaly detection strategy. J. Inf. Data Manag., 11(1).

Anowar, F. and Sadaoui, S. (2019). Multi-class ensemble learning of imbalanced bidding fraud data. In Canadian AI, volume 11489 of Lecture Notes in Computer Science, pages 352–358. Springer.

Aquino Jr, G. S. d., Jacob, E., Henrique, G., Guerethes, J., and de Oliveira Silva, R. (2019). Dados abertos para o fomento da transparência e inovação: o caso da ufrn. iSys-Brazilian Journal of Information Systems, 12(2):39–59.

Araújo, J. L. et al. (2021). Caracterização de “Caminhos mais prováveis” em uma rede complexa de processos jurídicos. In BraSNAM, pages 44–54, Porto Alegre, Brasil. SBC.

Barabási, A.-L. (2016). Network science. Cambridge University Press.

Brum, P., Cândido Teixeira, M., Vimieiro, R., Araújo, E., Meira Jr, W., and Lobo Pappa, G. (2022). Political polarization on twitter during the covid-19 pandemic: a case study in brazil. Social Network Analysis and Mining, 12(1):1–17.

Costa, L., Reis, A., Bacha, C., Oliveira, G., Silva, M., Teixeira, M., Brandão, M., Lacerda, A., and Pappa, G. (2022). Alertas de fraude em licitações: Uma abordagem baseada em redes sociais. In Anais do XI Brazilian Workshop on Social Network Analysis and Mining, pages 37–48, Porto Alegre, RS, Brasil. SBC.

Elshaar, S. and Sadaoui, S. (2020). Detecting bidding fraud using a few labeled data. In ICAART, pages 17–25. SCITEPRESS.

Florentino, ́E. S., Goldschmidt, R. R., and Cavalcanti, M. C. (2022). Identificando suspeitos de crimes por meio de interações implícitas no youtube. iSys-Brazilian Journal of Information Systems, 15(1):3–1.

Ganguly, S. and Sadaoui, S. (2018). Online detection of shill bidding fraud based on machine learning techniques. In IEA/AIE, volume 10868 of Lecture Notes in Computer Science, pages 303–314. Springer.

Grace, E. et al. (2016). Detecting fraud, corruption, and collusion in international development contracts: The design of a proof-of-concept automated system. In IEEE BigData, pages 1444–1453. IEEE Computer Society.

Kansaon, D. P., Brandao, M. A., and de Paula Pinto, S. A. (2019). Análise de algoritmos de classificação para detecção de emoções em tweets em português brasileiro. iSys-Brazilian Journal of Information Systems, 12(3):116–138.

Lima, M. et al. (2020). Inferring about fraudulent collusion risk on Brazilian public works contracts in official texts using a Bi-LSTM approach. In EMNLP, pages 1580–1588, Online. ACL.

Oliveira, G. P., Reis, A. P., Freitas, F. A., Costa, L. L., Silva, M. O., Brum, P. P., Oliveira, S. E., Brandão, M. A., Lacerda, A., and Pappa, G. L. (2022a). Detecting inconsistencies in public bids: An automated and data-based approach. In Brazilian Symposium on Multimedia and Web, pages 182–190.

Oliveira, G. P., Reis, A. P., Mendes, B. M., Bacha, C. A., Costa, L. L., Canguçu, G. L., Silva, M. O., Caetano, V., Brandão, M. A., Lacerda, A., et al. (2022b). Ferramentas open-source de qualidade de dados para licitações públicas: Uma análise comparativa. In Anais do XXXVII Simpósio Brasileiro de Bancos de Dados, pages 116–127. SBC.

Oskarsdóttir, M., Ahmed, W., Antonio, K., Baesens, B., Dendievel, R., Donas, T., and Reynkens, T. (2022). Social network analytics for supervised fraud detection in insurance. Risk Analysis, 42(8):1872–1890.

Park, C. H. and Kim, K. (2020). E-government as an anti-corruption tool: Panel data analysis across countries. International Review of Administrative Sciences, 86(4):691–707.

Pereira, R. and Murai, F. (2021). Quão efetivas são redes neurais baseadas em grafos na detecção de fraude para dados em rede? In BraSNAM, pages 205–210, Porto Alegre, Brasil. SBC.

Ralha, C. G. and Silva, C. V. S. (2012). A multi-agent data mining system for cartel detection in brazilian government procurement. Exp. Syst. Appl., 39(14):11642–11656.

Santoro, F. M., Revoredo, K. C., Costa, R. M., and Barboza, T. M. (2020). Process mining techniques in internal auditing: A stepwise case study. iSys- Brazilian Journal of Information Systems, 13(4):48–76.

Silva, M. O., Paula, A. F., Oliveira, G. P., Vaz, I. A., Hott, H., Gomide, L. D., Reis, A. P., Mendes, B. M., Bacha, C. A., Costa, L. L., et al. (2022). Lipset: Um conjunto de dados com documentos rotulados de licitações públicas. In Anais do IV Dataset Showcase Workshop, pages 13–24. SBC.

Velasco, R. B. et al. (2021). A decision support system for fraud detection in public procurement. Int. Trans. Oper. Res., 28(1):27–47.

Vlasselaer, V. V. et al. (2015). AFRAID: fraud detection via active inference in time-evolving social networks. In ASONAM, pages 659–666. ACM.

Vlasselaer, V. V. et al. (2017). Gotcha! network-based fraud detection for social security fraud. Manag. Sci., 63(9):3090–3110.

Wang, Y., Wang, L., Li, Y., He, D., Chen, W., and Liu, T.-Y. (2013). A theoretical analysis of ndcg ranking measures. In Proceedings of the 26th annual conference on learning theory (COLT 2013), volume 8, page 6.

Published

2023-12-31

How to Cite

L. Costa, L., A. Bacha, C., P. Oliveira, G., O. Silva, M., C. Teixeira, M., A. Brandão, M., Lacerda, A., & L. Pappa, G. (2023). Identification of suspected fraud bids through audit trails. ISys - Brazilian Journal of Information Systems, 16(1), 13:1–13:23. https://doi.org/10.5753/isys.2023.3013

Issue

Section

Extended versions of selected articles

Most read articles by the same author(s)