A Process for Eliciting Trustworthy Requirements in Machine Learning Systems

Authors

  • Francisco Luciano Quirino da Silva Programa de Pós-Graduação em Computação (PCOMP) - Universidade Federal do Ceará (UFC) https://orcid.org/0000-0002-7039-7248
  • Andréia Libório Sampaio Programa de Pós-Graduação em Computação (PCOMP) - Universidade Federal do Ceará (UFC) https://orcid.org/0000-0003-1249-3351
  • Carla Ilane Moreira Bezerra Programa de Pós-Graduação em Computação (PCOMP) - Universidade Federal do Ceará (UFC) https://orcid.org/0000-0002-5879-5067
  • Ingrid Teixeira Monteiro Programa de Pós-Graduação em Computação (PCOMP) - Universidade Federal do Ceará (UFC) https://orcid.org/0000-0001-5468-0724

DOI:

https://doi.org/10.5753/isys.2025.3878

Keywords:

Artificial intelligence, Machine learning, Trustworthy artificial intelligence, Requirement elicitation process, Brainwriting

Abstract

This work proposes a process for Requirements Elicitation (RE) for Trustworthy Artificial Intelligence (AI), focused on Machine Learning (ML) systems. The process promotes the participation of various stakeholders involved in the development of these systems. It was developed based on the Brainwriting technique and insights obtained from a study that investigated this technique in the elicitation of requirements for Trustworthy AI. The study involved six female participants discussing Trustworthy AI based on the gender bias case of Amazon's algorithm, resulting in the creation of requirements for Trustworthy AI. This research contributes to filling gaps in RE for Trustworthy AI and promotes reflections on the challenges and aspects of this topic.

Downloads

Download data is not yet available.

Author Biography

Andréia Libório Sampaio, Programa de Pós-Graduação em Computação (PCOMP) - Universidade Federal do Ceará (UFC)

 

 

References

Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., and Grundy, J. (2021). What’s up with requirements engineering for artificial intelligence systems? In 2021 IEEE 29th International Requirements Engineering Conference (RE), pages 1–12.

Bellaby, R. W. (2021). Can ai weapons make ethical decisions? Criminal Justice Ethics, 40(2):86–107.

Boy, G. (1996). The group elicitation method: An introduction. In Advances in Knowledge Acquisition: 9th European Knowledge Acquisition Workshop, EKAW’96 Nottingham, United Kingdom, May 14–17, 1996 Proceedings 9, pages 290–305. Springer.

Calazans, A. T. S., Paldês, R. Á., Masson, E. T. S., and Guimarães, F. d. A. (2018). As técnicas de elicitação e de documentação de requisitos nos métodos ágeis. In CIbSE, pages 487–500.

Carvalho, N. d. O., Libório Sampaio, A., and de Vasconcelos, D. R. (2022). Morexai - a model to reason about the explanation design in ai systems. In Degen, H. and Ntoa, S., editors, Artificial Intelligence in HCI, pages 130–148, Cham. Springer International Publishing.

Cerqueira, J. A. S., De Azevedo, A. P., Leão, H. A. T., and Canedo, E. D. (2022). Guide for artificial intelligence ethical requirements elicitation-re4ai ethical guide. In HICSS, pages 1–1.

Dastin, J. (2018). Amazon scraps secret ai recruiting tool that showed bias against women. In Ethics of Data and Analytics, pages 296–299. Auerbach Publications.

Gruber, K., Huemer, J., Zimmermann, A., and Maschotta, R. (2017). Integrated description of functional and non-functional requirements for automotive systems design using sysml. In 2017 7th IEEE International Conference on System Engineering and Technology (ICSET), pages 27–31.

Heslin, P. A. (2009). Better than brainstorming? potential contextual boundary conditions to brainwriting for idea generation in organizations. Journal of Occupational and Organizational Psychology, 82(1):129–145.

Horkoff, J. (2019). Non-functional requirements for machine learning: Challenges and new directions. In 2019 IEEE 27th International Requirements Engineering Conference (RE), pages 386–391.

Ishikawa, F. and Matsuno, Y. (2020). Evidence-driven requirements engineering for uncertainty of machine learning-based systems. In 2020 IEEE 28th International Requirements Engineering Conference (RE), pages 346–351. IEEE.

Kaur, D., Uslu, S., Rittichier, K. J., and Durresi, A. (2022). Trustworthy artificial intelligence: A review. ACM Comput. Surv., 55(2).

Lazar, J., Feng, J. H., and Hochheiser, H. (2017). Research methods in human-computer interaction. Morgan Kaufmann.

Li, B., Qi, P., Liu, B., Di, S., Liu, J., Pei, J., Yi, J., and Zhou, B. (2023). Trustworthy ai: From principles to practices. ACM Comput. Surv., 55(9).

Michinov, N. (2012). Is electronic brainstorming or brainwriting the best way to improve creative performance in groups? an overlooked comparison of two idea-generation techniques. Journal of Applied Social Psychology, 42:E222–E243.]

Pazmino, A. V. (2015). Como se cria: 40 métodos para design de produtos. Editora Blucher.

Pei, Z., Liu, L., Wang, C., and Wang, J. (2022). Requirements engineering for machine learning: A review and reflection. In 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW), pages 166–175.

Silva, F. L. Q. d., Sampaio, A. L., Bezerra, C. I. M., and Monteiro, I. T. (2023). Brainwriting na elicitação de requisitos para ia confiável. In Anais do VIII Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software, pages 111–120. SBC.

Thiebes, S., Lins, S., and Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31:447–464.

VanGundy, A. B. (1984). Brainwriting for new product ideas: an alternative to brainstorming. Journal of Consumer Marketing.

Villamizar, H., Escovedo, T., and Kalinowski, M. (2021). Requirements engineering for machine learning: A systematic mapping study. In 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pages 29–36.

Yoshioka, N., Husen, J. H., Tun, H. T., Chen, Z., Washizaki, H., and Fukazawa, Y. (2021). Landscape of requirements engineering for machine learning-based ai systems. In 2021 28th Asia-Pacific Software Engineering Conference Workshops (APSEC Workshops), pages 5–8.

Published

2025-01-27

How to Cite

Quirino da Silva, F. L., Libório Sampaio, A., Moreira Bezerra, C. I., & Teixeira Monteiro, I. (2025). A Process for Eliciting Trustworthy Requirements in Machine Learning Systems. ISys - Brazilian Journal of Information Systems, 18(1), 2:1 – 2:29. https://doi.org/10.5753/isys.2025.3878

Issue

Section

Extended versions of selected articles

Most read articles by the same author(s)