Barbieri Distance: a metric to identify similarity between consumer profiles
DOI:
https://doi.org/10.5753/isys.2020.537Keywords:
Content-based filtering, Levenshtein distance, Recommender systems, SimilarityAbstract
This work is part of the study of recommender systems with content-based filtering, having as motivation the observation of user behavior in an Enterprise Resource Planning (ERP). The main contribution of the work is the development of Barbieri Distance, a metric whose purpose is to measure the similarity between buyers based on their purchase history. The metric is for situations where there is no buyer valuation data for the product purchased. Since it does not require ratings for items, because similarity happens when buyers buy too much or too little of the same product, it is possible to identify the similarity of the consumer profile based on their purchase history. In order to perform the metric validation experiments, a comparison method between buyer profiles is used, which presented satisfactory results in the calculation of similarity.
Downloads
References
Barth, F. J. (2010) “Modelando o perfil do usuário para a construção de sistemas de recomendação: um estudo teórico e estado da arte”, Revista de Sistemas de Informação da FSMA, n.6, p. 59-71.
Bastos, W. M. (2009) “Metodologia para recomendação de consultores ad-hoc baseada na extração de perfis do currículo Lattes”, Universidade de Brasília, mês 7.
Cervi, C. R., Galante, R. and Oliveira, J. P. M. (2013) “Application of Scientific Metrics to Evaluate Academic Reputation in Different Research Areas”, In International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, World Academy of Science, Engineering and Technology, v.7, n.10, p. 2778-2788, http://waset.org/publications/17174.
Cervi, C. R., Galante, R. and Oliveira, J. P. M. (2013) “Comparing the Reputation of Researchers Using a Profile Model and Scientific Metrics”, In: 2013 IEEE 16th International Conference on Computational Science and Engineering, p. 353-359, doi: 10.1109/CSE.2013.61.
Croft, W. B., Metzler, D. and Strohman, T. (2010) “Search engines: Information retrieval in practice”, Addison-Wesley Reading, v.283.
Goldberg, D. et al. (1992) “Using Collaborative Filtering to Weave an Information Tapestry”, Commun. ACM, New York, NY, USA, v.35, n.12, p. 61-70. doi: 10.1145/138859.138867.
Henriques, P. M. M. (2016) “Smart search in a distributed environment”, Faculdade De Engenharia Da Universidade Do Porto, https://repositorio-aberto.up.pt/handle/10216/85259.
Herlocker, J. L. (2000) “Understanding and Improving Automated Collaborative Filtering Systems”, University of Minnesota, Minneapolis, MN, USA.
Levenshtein, V. I. (1966) “Binary codes capable of correcting deletions, insertions, and reversals”, In: Soviet physics doklady, v.10, n.8, p. 707-710, https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf.
Maria, S. A. A. (2017) “RecETC : uma funcionalidade baseada na recomendação de conteúdo para auxiliar no processo de escrita coletiva digital”, Universidade Federal do Rio Grande do Sul, Porto Alegre, mês 5, http://hdl.handle.net/10183/170310.
Meurer, H. (2014) “Ferramenta de gerenciamento e recomendação como recurso na aprendizagem baseada em projeto em design”, Universidade Federal do Rio Grande do Sul, Porto Alegre, mês 12, http://hdl.handle.net/10183/115721.
Plumbaum, T. (2015) “User modeling in the social semantic web”, Technische Universität Berlin, Berlim, mês 12, http://dl.acm.org/citation.cfm?id=2887675.2887684.
Resnick, P. and Varian, H. R. (1997) “Recommender Systems”, Commun. ACM, New York, NY, USA v.40, n.3, p. 56-58, doi: 10.1145/245108.245121.
Ricci, F., Rokach, L. and Shapira, B. (2011) "Introduction to Recommender Systems Handbook”, In: Recommender Systems Handbook, Springer Publishing Company, Inc., Boston, MA, p. 1-35, doi: 10.1007/978-0-387-85820-3_1.
Rich, E. (1979) “Building and Exploiting User Models”, In: Proceedings of the 6th International Joint Conference on Artificial Intelligence – v.2, Tokyo, Japan, series: IJCAI'79, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, p. 720-722, http://dl.acm.org/citation.cfm?id=1623050.1623079.
Santana, L. L. B. S. (2018) “Explorando relações entre usuários em um sistema de recomendação híbrido baseado em filmes”, Universidade Federal da Bahia, Salvador, mês 10.
Vieira, P. K. M. (2013) “Recomendação semântica de conteúdo em ambientes de convergência digital”, Universidade Federal da Paraíba, João Pessoa, mês 3, https://repositorio.ufpb.br/jspui/handle/tede/7826.
Vivian, G. R. (2017) “Recomendação de carreira de pesquisadores: uma abordagem baseada em personalização, similaridade de perfil e reputação”, Universidade de Passo Fundo, Passo Fundo, http://tede.upf.br:8080/jspui/handle/tede/1425.
Yao, L., Xu, Z., Zhou, X. and Lev, B. (2019) “Synergies Between Association Rules and Collaborative Filtering in Recommender System: An Application to Auto Industry.” In: García Márquez F., Lev B. (eds) Data Science and Digital Business. Springer, Cham.