Exploring Irregularities in Brazilian Public Bids: An In-depth Analysis on Small Companies

Authors

DOI:

https://doi.org/10.5753/jis.2024.3836

Keywords:

public bids, fraud detection, e-government, small businesses, network analysis

Abstract

In Brazil, bidding processes constitute the main method through which the Public Administration acquires goods and services, and they aim to select the best proposal between several bidding companies. Analyzing public bids can reveal several negotiating characteristics between companies and the public sector, including alerts of fraudulent activities involving such businesses. This article presents two approaches for detecting irregularities within small companies using data extracted from public bids in the Brazilian state of Minas Gerais. For each approach, we perform exploratory and geospatial analysis to better understand specific characteristics of the companies with irregularity alerts. Furthermore, we execute a network analysis to examine the underlying connections between such companies. Our findings reveal the efficacy of both approaches in indicating small companies that may be involved in fraudulent activities. Our methodology and results represent a significant advance for the public sector as they have the potential to enhance mechanisms for overseeing and preventing fraud within bidding processes. 

Downloads

Download data is not yet available.

References

Barabási, A.-L. (2016). Network science. Cambridge University Press.

Beppu, F. R., Maciel, C., and Viterbo, J. (2021). Contributions of the Brazilian Act for the Protection of Personal Data for treating Digital Legacy. Journal on Interactive Systems, 12(1):112–124. DOI: 10.5753/jis.2021.1654.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008.

Brandão, M. A., Reis, A. P. G., Mendes, B. M. A., Almeida, C. A. B., Oliveira, G. P., Hott, H., Gomide, L. D., Costa, L. L., Silva, M. O., Lacerda, A., and Pappa, G. L. (2023). PLUS: A Semi-automated Pipeline for Fraud Detection in Public Bids. Digital Government: Research and Practice, 5(1):1–16. DOI: 10.1145/3616396.

Braz, C. S., Mendes, B. M. A., Oliveira, G. P., Costa, L. L., Silva, M. O., Brandão, M. A., Lacerda, A., and Pappa, G. L. (2023). Análise de irregularidades em licitações públicas com foco em empresas de pequeno porte. In Proceedings of the 11th Workshop on Computing Applied to E-Government, pages 94–105, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/wcge.2023.230254.

Buryakov, D., Kovács, M., Kryssanov, V. V., and Serdült, U. (2022). Using open government data to facilitate the design of voting advice applications. In Electronic Participation - 14th IFIP WG 8.5 International Conference, volume 13392 of Lecture Notes in Computer Science, pages 19–34. Springer. DOI: 10.1007/978-3-031-23213-8_2.

Coelho, G. M. C., Ramos, A. C., de Sousa, J., Cavaliere, M., de Lima, M. J., Mangeth, A., Frajhof, I. Z., Cury, C., and Casanova, M. A. (2022). Text classification in the brazilian legal domain. In Proceedings of the 24th International Conference on Enterprise Information Systems, ICEIS, pages 355–363. SCITEPRESS. DOI: 10.5220/0011062000003179.

Costa, L. L., Reis, A. P. G., Bacha, C. A., Oliveira, G. P., Silva, M. O., Teixeira, M. C., Brandão, M. A., Lacerda, A., and Pappa, G. L. (2022). Alertas de fraude em licitações: Uma abordagem baseada em redes sociais. In Proceedings of the 11th Brazilian Workshop on Social Network Analysis and Mining, pages 37–48, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/brasnam.2022.223175.

Figueiredo, B., Nakamura, F., Felix, G., and Nakamura, E. (2020). Usando análises sociais na identificação de nós relevantes em um cenário multi-redes: Operação licitante fantasma, um estudo de caso. In Anais do VIII Workshop de Computação Aplicada em Governo Eletrônico, pages 108–119, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/wcge.2020.11262.

Gabardo, A. C. and Lopes, H. S. (2014). Using social network analysis to unveil cartels in public bids. In European Network Intelligence Conference, ENIC, pages 17–21. IEEE Computer Society. DOI: 10.1109/ENIC.2014.11.

Galvão Júnior, D., Filho, G. S., and Cabral, L. (2023). Classificação de fraudes em licitações públicas através do agrupamento de empresas em conluios. In Anais do XI Workshop de Computação Aplicada em Governo Eletrônico, pages 13–24, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/wcge.2023.229519.

Lima, M. C., Silva, R., de Souza Mendes, F. L., de Carvalho, L. R., Araújo, A. P. F., and de Barros Vidal, F. (2020). Inferring about fraudulent collusion risk on Brazilian public works contracts in official texts using a Bi-LSTM approach. In Findings of the Association for Computational Linguistics: EMNLP, volume EMNLP 2020 of Findings of ACL, pages 1580–1588. ACL. DOI: 10.18653/V1/2020.FINDINGS-EMNLP.143.

Luna, R. and Figueiredo, D. (2022). Caracterização das licitações públicas no estado do rio de janeiro: Diversidade, licitantes Únicos e redes. In Anais do X Workshop de Computação Aplicada em Governo Eletrônico, pages 145–156. SBC. DOI: 10.5753/wcge.2022.222675.

Lyra, M. S., Curado, A., Damásio, B., Bação, F., and Pinheiro, F. L. (2021). Characterization of the firm-firm public procurement co-bidding network from the State of Ceará (Brazil) municipalities. Appl. Netw. Sci., 6(1):77. DOI: 10.1007/S41109-021-00418-Y.

Monteiro, M. S., Batista, G. O. S., and Salgado, L. C. C. (2023). Investigating usability pitfalls in Brazilian and Foreign governmental chatbots. Journal on Interactive Systems, 14(1):331–340. DOI: 10.5753/jis.2023.3104.

Nai, R., Sulis, E., and Meo, R. (2022). Public procurement fraud detection and artificial intelligence techniques: a literature review. In Companion Proceedings of the 23rd International Conference on Knowledge Engineering and Knowledge Management, volume 3256 of CEUR Workshop Proceedings. CEUR-WS.org.

Oliveira, G. P., Reis, A. P. G., Freitas, F. A. N., Costa, L. L., Silva, M. O., Brum, P. P. V., Oliveira, S. E. L., Brandão, M. A., Lacerda, A., and Pappa, G. L. (2022a). Detecting inconsistencies in public bids: An automated and data-based approach. In Brazilian Symposium on Multimedia and Web, pages 182–190. ACM. DOI: 10.1145/3539637.3558230.

Oliveira, G. P., Reis, A. P. G., Mendes, B. M. A., Bacha, C. A., Costa, L. L., Canguçu, G. L., Silva, M. O., Caetano, V., Brandão, M. A., Lacerda, A., and Pappa, G. L. (2022b). Ferramentas open-source de qualidade de dados para licitações públicas: Uma análise comparativa. In Proceedings of the 37th Brazilian Symposium on Databases, pages 116–127, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbbd.2022.224351.

Pereira, A. K. S., Vita, Y. M., Felix, G. S., Gimaque, J. M. F., Damasceno, M. L. S., and Figueirêdo, B. C. B. (2022). Usando redes complexas na identificação de empresas fraudulentas em licitações públicas. In Anais do X Workshop de Computação Aplicada em Governo Eletrônico, pages 13–24. SBC. DOI: 10.5753/wcge.2022.222704.

Reis, V. Q., Rabello, M. E. R., Lima, A. C., Jardim, G. P. S., Fernandes, E. R., and Brefeld, U. (2023). Data practices in apps from Brazil: What do privacy policies inform us about? Journal on Interactive Systems, 14(1):1–8. DOI: 10.5753/jis.2023.2954.

Silva, M. O., Paula, A. F., Oliveira, G. P., Vaz, I. A. D., Hott, H., Gomide, L. D., Reis, A. P. G., Mendes, B. M. A., Bacha, C. A., Costa, L. L., Brandão, M. A., Lacerda, A., and Pappa, G. L. (2022). LiPSet: Um conjunto de Dados com Documentos Rotulados de Licitações Públicas. In Proceedings of the 4th Dataset Showcase Workshop, pages 13–24. SBC. DOI: 10.5753/dsw.2022.224925.

Downloads

Published

2024-04-04

How to Cite

BRAZ, C. S.; DUTRA, M. T.; OLIVEIRA, G. P.; COSTA, L. G. L.; SILVA, M. O.; BRANDÃO, M. A.; LACERDA, A.; PAPPA, G. L. Exploring Irregularities in Brazilian Public Bids: An In-depth Analysis on Small Companies. Journal on Interactive Systems, Porto Alegre, RS, v. 15, n. 1, p. 349–361, 2024. DOI: 10.5753/jis.2024.3836. Disponível em: https://journals-sol.sbc.org.br/index.php/jis/article/view/3836. Acesso em: 19 may. 2024.

Issue

Section

Regular Paper

Most read articles by the same author(s)