Could Gameplay Data of Games with a Purpose Assist in Training Hazardous Situations in the Industry?




Games With a Purpose, Safety Training, Hazard Training, Gameplay Data, Industry


Accidents and risks in the industry pose significant challenges concerning executing critical tasks. Inadequate employee training compromises the ability to manage risks, making the environment prone to accidents. In this context, games with training purposes emerge as a promising solution, providing an interactive and immersive environment. Focusing on improved risk management, organizational managers can utilize data collected by these games as metrics for monitoring and enhancement. However, it is necessary to understand how games with a purpose can contribute to the training process for hazardous situations in the industry. With this in mind, this study investigates the topic by exploring both the literature through a systematic mapping and the perceptions of workers from an oil and gas industry through a survey. As a result of the investigations, techniques for analyzing and visualizing gameplay data obtained from training games, design elements, game genres, and primary usage contexts were identified. Additionally, it was possible to analyze workers' perceptions from the oil and gas industry of how these games and their data can add value and contribute to safety training sections within their workplaces. Therefore, there were indications that games with a purpose, combined with data analysis and visualization techniques, can offer a new perspective for conducting and evaluating training, providing information that contributes to improving work quality indices and reducing severe accident risks within the industry.


Download data is not yet available.


Andrade, M., Souto Maior, C., Silva, E., Moura, M., and Lins, I. (2018). Serious games & human reliability. the use of game-engine-based simulator data for studies of evacuation under toxic cloud scenario. In Proc. of Probabilistic Safety Assessment and Management Conference (PSAM 14), pages 1–12.

Bachvarova, Y., Bocconi, S., van der Pols, B., Popescu, M., and Roceanu, I. (2012). Measuring the effectiveness of learning with serious games in corporate training. Procedia Computer Science, 15:221–232. DOI:

Barizon, J. and Braga, E. S. (2020). Prevenção de acidentes na indústria. Revista Eletrônica TECCEN, 13(1):41–48. DOI:

Bellanca, J. L., Orr, T. J., Helfrich, W. J., Macdonald, B., Navoyski, J., and Demich, B. (2019). Developing a virtual reality environment for mining research. Mining, metallurgy & exploration, 36:597–606. DOI:

Bispo Jr, E. L., Fonseca, L. S., and Santos, S. C. (2021). Reflexoes e desafios sobre a formaçao na etica em pesquisa na computaçao envolvendo humanos. In Anais do XXIX Workshop sobre Educação em Computação, pages 488–497. SBC. DOI:

BRASIL (2021). Evolução dos acidentes de trabalho. Disponível em: [link]. Acesso em: 23 mai. 2023.

Creswell, J. W. and Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

EBC (2022). Brasil registra mais de 612 mil acidentes de trabalho em 2022. Disponível em: [link]. Acesso em: 23 mai. 2023.

El-Nasr, M. S., Drachen, A., and Canossa, A. (2016). Game analytics. Springer.

Fracaro, S. G., Chan, P., Gallagher, T., Tehreem, Y., Toyoda, R., Bernaerts, K., Glassey, J., Pfeiffer, T., Slof, B., Wachsmuth, S., et al. (2021). Towards design guidelines for virtual reality training for the chemical industry. Education for Chemical Engineers, 36:12–23. DOI:

Frutos-Pascual, M. and Zapirain, B. G. (2015). Review of the use of ai techniques in serious games: Decision making and machine learning. IEEE Transactions on Computational Intelligence and AI in Games, 9(2):133–152. DOI:

Gasiba, T. E., Lechner, U., and Pinto-Albuquerque, M. (2021). Cybersecurity challenges: Serious games for awareness training in industrial environments. ArXiv, abs/2102.10432.

Gasiba, T. E., Lechner, U., Rezabek, F., and Pinto-Albuquerque, M. (2020). Cybersecurity games for secure programming education in the industry: Gameplay analysis. In International Computer Programming Education Conference, pages 1–11. DOI:

Haoran, G., Bazakidi, E., and Zary, N. (2019). Serious games in health professions education: review of trends and learning efficacy. Yearbook of medical informatics, 28(01):240–248. DOI:

Huang, Z., Le, T., Gao, Y., Yao, X., Wang, H., Zhao, W., Zhang, Y., and Nie, N. (2020). Safety assessment of emergency training for industrial accident scenarios based on analytic hierarchy process and gray-fuzzy comprehensive assessment. IEEE Access, 8:144767–144777. DOI:

IBGE (2023). Instituto brasileiro de geografia e estatística. Disponível em: [link]. Acesso em: 23 mai. 2023.

Jacobsen, E. L., Solberg, A., Golovina, O., and Teizer, J. (2022). Active personalized construction safety training using run-time data collection in physical and virtual reality work environments. Construction innovation, 22(3):531–553. DOI:

Jin, G., Nakayama, S., and Tu, M. (2020). Game based learning for safety and security education. Journal of Education and Learning (EduLearn), 14(1):114–122. DOI:

Khan, N., Muhammad, K., Hussain, T., Nasir, M., Munsif, M., Imran, A. S., and Sajjad, M. (2021). An adaptive game-based learning strategy for children road safety education and practice in virtual space. Sensors (Basel, Switzerland), 21. DOI:

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(2004):1–26.

Liang, Z., Zhou, K., and Gao, K. (2019). Development of virtual reality serious game for underground rock-related hazards safety training. IEEE access, 7:118639–118649. DOI:

Liu, S., Aurambout, J.-P., Villalta, O., Edwards, J., De Barro, P., Kriticos, D. J., and Cook, D. C. (2015). A structured war-gaming framework for managing extreme risks. Ecological Economics, 116:369–377. DOI:

Manzato, A. J. and Santos, A. B. (2012). A elaboração de questionários na pesquisa quantitativa. Departamento de Ciência de Computação e Estatística–IBILCE–UNESP, 17.

Marhavilas, P. K. and Koulouriotis, D. (2008). A risk-estimation methodological framework using quantitative assessment techniques and real accidents’ data: Application in an aluminum extrusion industry. Journal of Loss Prevention in the Process Industries, 21(6):596–603. DOI:

Midway, S. R. (2020). Principles of effective data visualization. Patterns, 1(9):100141. DOI:

Mystakidis, S., Besharat, J., Papantzikos, G., Christopoulos, A., Stylios, C., Agorgianitis, S., and Tselentis, D. (2022). Design, development, and evaluation of a virtual reality serious game for school fire preparedness training. Education Sciences, 12(4):281. DOI:

Nascimento, L. d. C. N., Souza, T. V. d., Oliveira, I. C. d. S., Moraes, J. R. M. M. d., Aguiar, R. C. B. d., and Silva, L. F. d. (2018). Saturação teórica em pesquisa qualitativa: relato de experiência na entrevista com escolares. Revista Brasileira de Enfermagem, 71:228–233. DOI:

Navarro, A. F. (2022). A (im) previsibilidade da ocorrência de desvios, quase acidentes e acidentes. Disponível em: [link]. Acesso em: 23 mai. 2023.

Nazir, S., Sorensen, L. J., Øvergård, K. I., and Manca, D. (2015). Impact of training methods on distributed situation awareness of industrial operators. Safety Science, 73:136–145. DOI:

Panou, A., Ntantogian, C., and Xenakis, C. (2017). Riski: A framework for modeling cyber threats to estimate risk for data breach insurance. In Proceedings of the 21st Pan-Hellenic Conference on Informatics, pages 1–6. DOI:

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles of survey research: part 1: turning lemons into lemonade. ACM SIGSOFT Software Engineering Notes, 26(6):16–18. DOI:

Pinto, M. d. R. and Santos, L. L. d. S. (2012). A grounded theory como abordagem metodológica: relatos de uma experiência de campo. Organizações & Sociedade, 19:417–436. DOI:

Riazanova, N. (2022). Formation of risk management system at industrial enterprises. Academic Review, 1(56):63–73. DOI:

Roy, D., Srivastava, R., Jat, M., and Karaca, M. S. (2022). A complete overview of analytics techniques: descriptive, predictive, and prescriptive. Decision intelligence analytics and the implementation of strategic business management, pages 15–30. DOI:

Rufino Júnior, R., Classe, T., and Santos, R. (2022). Jogos digitais para treinamento de situações de risco na indústria - rapid review. In Anais Estendidos do XXI Simpósio Brasileiro de Jogos e Entretenimento Digital, pages 1157–1166, Porto Alegre, RS, Brasil. SBC. DOI:

Rufino Júnior, R., Classe, T. M., and Siqueira, S. W. M. (2023). Games with training purpose for hazard situations in the industry - systematic mapping of the literature. In Proceedings of IXX Brazilian Symposium of Information Systems, pages 1–10, New York. ACM. DOI:

Runfino Júnior, R., Classe, T. M., dos Santos, R. P., and Siqueira, S. W. M. (2023). Current risk situation training in industry, and games as a strategy for playful, engaging and motivating training. Journal on Interactive Systems, 14(1):138–156. DOI:

Ruppenthal, J. E. (2013). Gerenciamento de riscos. Santa Maria: Universidade Federal de Santa Maria, Colégio Técnico Industrial de Santa Maria.

Salas, E. and Cannon-Bowers, J. A. (2001). The science of training: A decade of progress. Annual Review of Psychology, 52:471 – 499. DOI:

Salvi, O., Merad, M., Rodrigues, N., and Ineris (2020). An integrated vision to assist the evolution in industrial risk management process in france. In International Conference ”Bhopal gas tragedy and its effects on process safety”, pages 103–105.

Sermet, Y., Demir, I., and Muste, M. (2020). A serious gaming framework for decision support on hydrological hazards. Science of The Total Environment, 728:138895. DOI:

Strauss, A. and Corbin, J. (1990). Basics of qualitative research. Sage publications.

Thabit, T. H. and Younus, S. Q. (2018). Risk assessment and management in construction industries. International Journal of Research and Engineering, 5(2):315–320. DOI:

Von Ahn, L. (2006). Games with a purpose. Computer, 39(6):92–94. DOI:

Wagner, S., Mendez, D., Felderer, M., Graziotin, D., and Kalinowski, M. (2020). Challenges in survey research. Contemporary Empirical Methods in Software Engineering, pages 93–125. DOI:

Wolf, M., Teizer, J., Wolf, B., Bükrü, S., and Solberg, A. (2022). Investigating hazard recognition in augmented virtuality for personalized feedback in construction safety education and training. Advanced Engineering Informatics, 51:101469. DOI:

Yannakakis, G. N. and Togelius, J. (2018). Artificial intelligence and games, volume 2. Springer.

Zhou, X., Jin, Y., Zhang, H., Li, S., and Huang, X. (2016). A map of threats to validity of systematic literature reviews in software engineering. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), pages 153–160. IEEE. DOI:




How to Cite

SERRA, C. B.; CLASSE, T. M. de. Could Gameplay Data of Games with a Purpose Assist in Training Hazardous Situations in the Industry?. Journal on Interactive Systems, Porto Alegre, RS, v. 15, n. 1, p. 490–503, 2024. DOI: 10.5753/jis.2024.4165. Disponível em: Acesso em: 24 jun. 2024.



Regular Paper