Victus Exergame: An Approach to Rehabilitation of Amputees Based in Serious Game
DOI:
https://doi.org/10.5753/jis.2025.4194Keywords:
Physical Rehabilitation, Embedded Systems, Serious Game, Game Health, ExergameAbstract
This article describes a solution that aims to make the process of physical rehabilitation more attractive for amputees through a solution based on medical informatics and gamification through a serious game. Addressing the challenges faced by individuals with lower limb amputations during physiotherapy — such as trauma, pain, and lack of motivation — this work introduces a serious game that incorporates an embedded sensor system with microcontrollers to a stationary bike. That system serves as both the game controller and a set of biological monitors, alongside a physiotherapy tool that displays the data obtained during sessions for the therapists to track patient progress. Developed through a participatory design approach involving patients and therapists, the system collects data on user engagement, physiological responses, and performance metrics via sensors and feedback forms. By fostering a relaxed and immersive treatment environment, the approach seeks to improve the effectiveness of physiotherapy. Initial experiments demonstrated that this solution holds promise in creating a more playful and motivating physical rehabilitation environment.
Downloads
References
Altarriba Bertran, F. (2014). The revolution of fun: A study of applied games and fun in non-entertainment contexts. Master’s thesis, Universitat Pompeu Fabra. [link], Accessed: 19 December 2024.
Arandia, N., Garate, J. I., and Mabe, J. (2022). Embedded sensor systems in medical devices: Requisites and challenges ahead. Sensors, 22(24). DOI: https://doi.org/10.3390/s22249917.
Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., and Vos, T. (2020). Global estimates of the need for rehabilitation based on the global burden of disease study 2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10267):2006–2017. DOI: https://doi.org/10.1016/S0140-6736(20)32340-0.
Gray, K. and Sockolow, P. (2016). Conceptual models in health informatics research: A literature review and suggestions for development. JMIR Medical Informatics, 4(1):e7. DOI: https://doi.org/10.2196/medinform.5021.
Joy-IT (2017). KY-023 Joystick Module (XY-Axis). [link], Accessed: 19 December 2024.
Krajbich, J. I., Pinzur, M. S., Potter, B. K., and Stevens, P. M. (2023). Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles. AAOS - American Academy of Orthopaedic Surgeons. Wolters Kluwer Health.
llc., W. F. E. (2015). PulseSensor. [link], Accessed: 19 December 2024.
Matos, D. R., Naves, J. F., and Araujo, T. C. C. F. d. (2020). Quality of life of patients with lower limb amputation with prostheses. Estudos de Psicologia (Campinas), 37. DOI: https://doi.org/10.1590/1982-0275202037e190047.
Matos, N., Santos, A., and Vasconcelos, A. (2014). Kinteract: A multi-sensor physical rehabilitation solution based on interactive games. In Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare. DOI: https://doi.org/10.4108/icst.pervasivehealth.2014.255325.
Melo, R., Mendes, D., Érico Marcelo Amaral, and Júnior, J. D. (2023). Gamificação na reabilitação física de amputados: Uma abordagem baseada em jogo sério. In Anais Estendidos do XXII Simpósio Brasileiro de Jogos e Entretenimento Digital, pages 1292–1302, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/sbgames_estendido.2023.234205.
MicroSystems, A. (2022). Low-Noise Linear Hall-Effect Sensor ICs with Analog Output. [link], Accessed: 19 December 2024.
Mousavi Hondori, H. and Khademi, M. (2014). A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. Journal of Medical Engineering, 2014. DOI: https://doi.org/10.1155/2014/846514.
Nascimento, D., Souza, C., Berretta, L., and Carvalho, S. (2023). Avaliação de um exergame para a telerreabilitação de pacientes. In Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde, pages 48–53, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/sbcas_estendido.2023.229818.
Prahm, C., Vujaklija, I., Kayali, F., Purgathofer, P., and Aszmann, O. C. (2017). Game-based rehabilitation for myoelectric prosthesis control. JMIR Serious Games, 5(1):e3. DOI: https://doi.org/10.2196/games.6026.
Rosique, F., Losilla, F., and Navarro, P. J. (2021). Applying vision-based pose estimation in a telerehabilitation application. Applied Sciences, 11(19). DOI: https://doi.org/10.3390/app11199132.
Technologies, A. (2015). 3-lead Muscle / Electromyography Sensor for Microcontroller Applications. [link], Accessed: 19 December 2024.
Van Diest, M., Lamoth, C. J., Stegenga, J., Verkerke, G. J., and Postema, K. (2013). Exergaming for balance training of elderly: State of the art and future developments. Journal of NeuroEngineering and Rehabilitation, 10(1):1–12. DOI: https://doi.org/10.1186/1743-0003-10-101.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rafael Luz Melo, Vítor da Silva Moreira, Érico Marcelo Hoff do Amaral, Julio S. Domingues Júnior
This work is licensed under a Creative Commons Attribution 4.0 International License.
JIS is free of charge for authors and readers, and all papers published by JIS follow the Creative Commons Attribution 4.0 International (CC BY 4.0) license.