What is the State of the Art on UX Data Visualization? A Systematic Mapping of the Literature

Authors

DOI:

https://doi.org/10.5753/jis.2025.4487

Keywords:

user experience, UX, systematic literature mapping, user data, information visualization

Abstract

From a Human-Computer Interaction perspective, data visualizations are visual representations of data that improve users' cognitive capabilities during a task. In particular, UX data visibility can raise a team's engagement with the UX design and better inform product decisions. However, researchers and professionals lack a foundation to build new UX data visualizations. In this context, this paper describes a Systematic Mapping of the Literature that aims to consolidate the state of the art on UX data visualizations. To guide the open coding of the findings, we defined ten questions that span the Visual Information Seeking Mantra and the four levels of Munzner's analysis framework. We identified 28 well-known and seven custom chart formats, with the node-link diagram arising as the most popular. Most of the visualized data comes from software logs, and there is a lack of exploration of UX metrics, acoustic data, and demographic data as data sources. Regarding the Visual Information Seeking Mantra, visualizations had a zoom and filter function and a details on demand function for most chart formats. However, most chart formats lacked overview functions. Our findings provide a broad overview of the literature that can support the creation of new UX data visualizations.

Downloads

Download data is not yet available.

References

Albert, B. and Tullis, T. (2022). Measuring the User Experience: Collecting, Analyzing, and Presenting UX Metrics. Interactive Technologies. Elsevier Science. DOI: https://doi.org/10.1016/C2018-0-00693-3.

Andersen, E., Liu, Y.-E., Apter, E., Boucher-Genesse, F., and Popović, Z. (2010). Gameplay Analysis through State Projection. In Proceedings of the Fifth International Conference on the Foundations of Digital Games, FDG ’10, pages 1–8, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/1822348.1822349.

Bernhaupt, R., Martinie, C., Palanque, P., and Wallner, G. (2020). A Generic Visualization Approach Supporting Task-Based Evaluation of Usability and User Experience. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12481 LNCS:24–44. DOI: https://doi.org/10.1007/978-3-030-64266-2_2.

Bernhaupt, R., Palanque, P., Drouet, D., and Martinie, C. (2019). Enriching task models with usability and user experience evaluation data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11262 LNCS:146–163. DOI: https://doi.org/10.1007/978-3-030-05909-5_9.

Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., and Ertl, T. (2017). Visualization of eye tracking data: A taxonomy and survey. Computer Graphics Forum, 36(8):260–284. DOI: https://doi.org/10.1111/cgf.13079.

Bogaard, T., Wielemaker, J., Hollink, L., Hardman, L., and van Ossenbruggen, J. (2020). Understanding User Behavior in Digital Libraries Using the MAGUS Session Visualization Tool. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12246 LNCS:171–184. DOI: https://doi.org/10.1007/978-3-030-54956-5_13.

Buchinger, D., Cavalcanti, G., and Hounsell, M. (2014). Mecanismos de busca acadêmica: uma análise quantitativa. Revista Brasileira de Computação Aplicada, 6(1):108–120. DOI: https://doi.org/10.5335/rbca.2014.3452.

Buono, P., Caivano, D., Costabile, M. F., Desolda, G., and Lanzilotti, R. (2020). Towards the Detection of UX Smells: The Support of Visualizations. IEEE Access, 8:6901–6914. DOI: https://doi.org/10.1109/ACCESS.2019.2961768.

Büschel, W., Lehmann, A., and Dachselt, R. (2021). MIRIA: A Mixed Reality Toolkit for the In-Situ Visualization and Analysis of Spatio-Temporal Interaction Data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, pages 1–15, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3411764.3445651.

Campos Filho, A. S., Novaes, M. A., and Gomes, A. S. (2015). A 3D visualization framework to social network monitoring and analysis. Computers in Human Behavior, 49:623–634. DOI: https://doi.org/10.1016/j.chb.2015.03.053.

Carrasco, M., Koh, E., and Malik, S. (2017). PopHistory: Animated Visualization of Personal Web Browsing History. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’17, pages 2429–2436, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3027063.3053259.

Cernea, D., Truderung, I., Kerren, A., and Ebert, A. (2014). An interactive visualization for tabbed browsing behavior analysis. Communications in Computer and Information Science, 458:69–84. DOI: https://doi.org/10.1007/978-3-662-44911-0_5.

Cernea, D., Weber, C., Ebert, A., and Kerren, A. (2015). Emotion-prints: Interaction-driven emotion visualization on multi-touch interfaces. In Proceedings of SPIE - The International Society for Optical Engineering, volume 9397. DOI: https://doi.org/10.1117/12.2076473.

Chen, A. T., Chang, J. H., Hallinan, S., and Mohr, D. C. (2019). Mapping User Trajectories to Examine Behavior and Outcomes in Digital Health Intervention Data. In 2019 IEEE Workshop on Visual Analytics in Healthcare (VAHC), pages 1–8. DOI: https://doi.org/10.1109/VAHC47919.2019.8945038.

Cockburn, A., Karlson, A., and Bederson, B. B. (2009). A Review of Overview+detail, Zooming, and Focus+context Interfaces. ACM Comput. Surv., 41(1). DOI: https://doi.org/10.1145/1456650.1456652.

Costa, I., Lima, R., dos Santos, C. G. R., Meiguins, B. S., Soares, A. G. M., and da SilvaFranco, R. Y. (2021). EmojiText: An Information Visualization Technique for Analyzing Phrases and Sentiments. In 2021 25th International Conference Information Visualisation (IV), pages 114–119. DOI: https://doi.org/10.1109/IV53921.2021.00027.

Da Silva Franco, R. Y., Abreu De Freitas, A., Santos Do Amor Divino Lima, R., Pereira Mota, M., Resque Dos Santos, C. G., and Serique Meiguins, B. (2019). UXmood - A Tool to Investigate the User Experience (UX) Based on Multimodal Sentiment Analysis and Information Visualization (InfoVis). In 2019 23rd International Conference Information Visualisation (IV), pages 175–180. DOI: https://doi.org/10.1109/IV.2019.00038.

Davila, F., Paz, F., and Moquillaza, A. (2023). Usage and application of heatmap visualizations on usability user testing: A systematic literature review. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14032 LNCS:3–17. DOI: https://doi.org/10.1007/978-3-031-35702-2_1.

Dias, R., Fonseca, M. J., and Gonçalves, D. (2012). Interactive Exploration of Music Listening Histories. In Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI ’12, pages 415–422, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2254556.2254637.

Dittrich, S., Hof, F., and Wiethoff, A. (2019). InteracDiff: Visualizing and Interacting with UX-Data. In Proceedings of Mensch Und Computer 2019, MuC’19, pages 583–587, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3340764.3344463.

Drachen, A. and Canossa, A. (2009a). Analyzing Spatial User Behavior in Computer Games Using Geographic Information Systems. In Proceedings of the 13th International MindTrek Conference: Everyday Life in the Ubiquitous Era, MindTrek ’09, pages 182–189, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/1621841.1621875.

Drachen, A. and Canossa, A. (2009b). Towards Gameplay Analysis via Gameplay Metrics. In Proceedings of the 13th International MindTrek Conference: Everyday Life in the Ubiquitous Era, MindTrek ’09, pages 202–209, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/1621841.1621878.

Du, W., Qian, Z. C., Parsons, P., and Chen, Y. V. (2018). Personal Web Library: organizing and visualizing Web browsing history. International Journal of Web Information Systems, 14(2):212–232. DOI: https://doi.org/10.1108/IJWIS-09-2017-0065.

Ebel, P., Lingenfelder, C., and Vogelsang, A. (2021). Visualizing Event Sequence Data for User Behavior Evaluation of In-Vehicle Information Systems . In 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’21, pages 219–229, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3409118.3475140.

Fabijan, A., Olsson, H. H., and Bosch, J. (2016). The Lack of Sharing of Customer Data in Large Software Organizations: Challenges and Implications. In Sharp, H. and Hall, T., editors, Agile Processes, in Software Engineering, and Extreme Programming, pages 39–52, Cham. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-33515-5_4.

Feitosa, V. R. M., Maia, J. G. R., Moreira, L. O., and Gomes, G. A. M. (2015). GameVis: Game Data Visualization for the Web. In 2015 14th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 70–79. DOI: https://doi.org/10.1109/SBGames.2015.21.

Gibbons, S. (2020). UX research cheat sheet. Available at: [link].

Göbel, F., Kiefer, P., and Raubal, M. (2019). FeaturEyeTrack: automatic matching of eye tracking data with map features on interactive maps . GeoInformatica, 23(4):663–687. DOI: https://doi.org/10.1007/s10707-019-00344-3.

Goodell, H., Chiang, C.-H., Kelleher, C., Baumann, A., and Grinstein, G. (2006). Collecting and Harnessing Rich Session Histories. In Tenth International Conference on Information Visualisation (IV’06), pages 117–123. DOI: https://doi.org/10.1109/IV.2006.33.

Goodwin, S., Prouzeau, A., Whitelock-Jones, R., Hurter, C., Lawrence, L., Afzal, U., and Dwyer, T. (2022). VETA: Visual eye-tracking analytics for the exploration of gaze patterns and behaviours. Visual Informatics, 6(2):1–13. DOI: https://doi.org/10.1016/j.visinf.2022.02.004.

Gu, Z., Yu, J. M., Wu, Z., and Dong, Z. X. (2015). Visualizing group user behaviors for social network interaction design iteration. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9188:36–45. DOI: https://doi.org/10.1007/978-3-319-20889-3_4.

Halabi, N., Wallner, G., and Mirza-Babaei, P. (2019). Assessing the Impact of Visual Design on the Interpretation of Aggregated Playtesting Data Visualization. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’19, pages 639–650, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3311350.3347164.

Hartson, R. and Pyla, P. (2018). The UX Book: Agile UX Design for a Quality User Experience. Elsevier Science. DOI: https://doi.org/10.1016/C2013-0-19285-9.

Hassenzahl, M. (2010). Experience Design: Technology for All the Right Reasons. Synthesis Lectures on Human-Centered Informatics. Morgan & Claypool Publishers. DOI: https://doi.org/10.2200/S00261ED1V01Y201003HCI008.

Hassenzahl, M. and Tractinsky, N. (2006). User experience - a research agenda. Behaviour & Information Technology, 25(2):91–97. DOI: https://doi.org/10.1080/01449290500330331.

Hokkanen, L., Kuusinen, K., and Väänänen, K. (2016). Minimum Viable User EXperience: A Framework for Supporting Product Design in Startups. In Sharp, H. and Hall, T., editors, Agile Processes, in Software Engineering, and Extreme Programming, pages 66–78, Cham. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-33515-5_6.

Hornbæk, K. and Hertzum, M. (2011). The notion of overview in information visualization. International Journal of Human-Computer Studies, 69(7):509–525. DOI: https://doi.org/10.1016/j.ijhcs.2011.02.007.

Hussain, J., Khan, W., Hur, T., Bilal, H., Bang, J., Hassan, A. U., Afzal, M., and Lee, S. (2018). A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation . Sensors, 18:1622. DOI: https://doi.org/10.3390/s18051622.

Jansen Ferreira, J., Segura, V., Fucs, A., de Paula, R., and Cerqueira, R. F. G. (2017). Abstraction Levels as Support for UX Design of User’s Interaction Logs . In Antona, M. and Stephanidis, C., editors, Universal Access in Human–Computer Interaction. Design and Development Approaches and Methods, pages 369–382, Cham. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-58706-6_30.

Jasim, M., Collins, C., Sarvghad, A., and Mahyar, N. (2022). Supporting Serendipitous Discovery and Balanced Analysis of Online Product Reviews with Interaction-Driven Metrics and Bias-Mitigating Suggestions. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, pages 1–24, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3491102.3517649.

Karapanos, E., Martens, J.-B., and Hassenzahl, M. (2012). Reconstructing experiences with iScale. International Journal of Human-Computer Studies, 70(11):849–865. DOI: https://doi.org/10.1016/j.ijhcs.2012.06.004.

Kashfi, P., Feldt, R., and Nilsson, A. (2019). Integrating UX principles and practices into software development organizations: A case study of influencing events. Journal of Systems and Software, 154:37–58. DOI: https://doi.org/10.1016/j.jss.2019.03.066.

Kepplinger, D., Wallner, G., Kriglstein, S., and Lankes, M. (2020). See, Feel, Move: Player Behaviour Analysis through Combined Visualization of Gaze, Emotions, and Movement. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, pages 1–14, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3313831.3376401.

Kieffer, S., Rukonić, L., Kervyn de Meerendré, V., and Vanderdonckt, J. (2019). Specification of a UX Process Reference Model towards the Strategic Planning of UX Activities. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pages 74–85. DOI: https://doi.org/10.5220/0007693600740085.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical report, Keele University and Durham University Joint Report.

Kotapalle, G. R., Kandala, H., and Gade, K. S. (2018). Extracting relationship between browser history items for improved client-side analytics and recommendations. In 2018 3rd International Conference on Contemporary Computing and Informatics (IC3I), pages 141–146. DOI: https://doi.org/10.1109/IC3I44769.2018.9007258.

Kucher, K., Paradis, C., and Kerren, A. (2018). The state of the art in sentiment visualization. Computer Graphics Forum, 37(1):71–96. DOI: https://doi.org/10.1111/cgf.13217.

Kujala, S., Roto, V., Väänänen-Vainio-Mattila, K., Karapanos, E., and Sinnelä, A. (2011). UX Curve: A method for evaluating long-term user experience. Interacting with Computers, 23(5):473–483. Feminism and HCI: New Perspectives. DOI: https://doi.org/10.1016/j.intcom.2011.06.005.

Lachner, F., Naegelein, P., Kowalski, R., Spann, M., and Butz, A. (2016). Quantified UX: Towards a Common Organizational Understanding of User Experience. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction, NordiCHI ’16, pages 1–10, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2971485.2971501.

Li, P. and Liu, Z. Y. (2020). E-customized product: User-centered co-design experiences. KSII Transactions on Internet and Information Systems, 14(9):3680–3692. DOI: https://doi.org/10.3837/tiis.2020.09.006.

Li, Q., Xu, P., Chan, Y. Y., Wang, Y., Wang, Z., Qu, H., and Ma, X. (2017). A Visual Analytics Approach for Understanding Reasons behind Snowballing and Comeback in MOBA Games. IEEE Transactions on Visualization and Computer Graphics, 23(1):211–220. DOI: https://doi.org/10.1109/TVCG.2016.2598415.

Liu, J. and Eagan, J. (2021). ADQDA: A Cross-Device Affinity Diagramming Tool for Fluid and Holistic Qualitative Data Analysis. Proceedings of the ACM on Human-Computer Interaction, 5(ISS):1–19. DOI: https://doi.org/10.1145/3488534.

MacCormick, D. and Zaman, L. (2020). Echo: Analyzing Gameplay Sessions by Reconstructing Them From Recorded Data. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’20, pages 281–293, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3410404.3414254.

MacCormick, D. and Zaman, L. (2023). Echoing the Gameplay: Analyzing Gameplay Sessions across Genres by Reconstructing Them from Recorded Data . International Journal of Human–Computer Interaction, 39(1):52–84. DOI: https://doi.org/10.1080/10447318.2021.2016237.

Medler, B., John, M., and Lane, J. (2011). Data Cracker: Developing a Visual Game Analytic Tool for Analyzing Online Gameplay. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2365–2374, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/1978942.1979288.

Moellendorff, M., Hassenzahl, M., and Platz, A. (2006). Dynamics of user experience: How the perceived quality of mobile phones changes over time. In User experience–towards a unified view. In Workshop at the 4th Nordic Conference on Human-Computer Interaction, pages 74–78.

Móro, R., Daráž, J., and Bieliková, M. (2014). Visualization of gaze tracking data for UX testing on the Web. In CEUR Workshop Proceedings, volume 1210.

Morrison, C. and Doherty, G. (2014). Analyzing engagement in a web-based intervention platform through visualizing log-data. Journal of Medical Internet Research, 16(11):e252. DOI: https://doi.org/10.2196/jmir.3575.

Munzner, T. (2014). Visualization Analysis and Design. AK Peters Visualization Series. CRC Press. DOI: https://doi.org/10.1201/b17511.

Paul, C. L. (2014). Analyzing Card-Sorting Data Using Graph Visualization. Journal of Usability Studies, 9(3):87–104.

Pepping, J., Scholte, S., van Wijland, M., de Meij, M., Wallner, G., and Bernhaupt, R. (2020). Motiis: Fostering Parents’ Awareness of Their Adolescents Emotional Experiences during Gaming. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, NordiCHI ’20, pages 1–11, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3419249.3420173.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic Mapping Studies in Software Engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, EASE’08, pages 68–77, Swindon, GBR. BCS Learning & Development Ltd.

Ramalho, B., Jorge, J., and Gama, S. (2023). Representing uncertainty through sentiment and stance visualizations: A survey. Graphical Models, 129:101191. DOI: https://doi.org/10.1016/j.gmod.2023.101191.

Rijnders, F., Wallner, G., and Bernhaupt, R. (2022). Live Feedback for Training Through Real-Time Data Visualizations: A Study with League of Legends. Proceedings of the ACM on Human-Computer Interaction, 6(CHI PLAY):1–23. DOI: https://doi.org/10.1145/3549506.

Rivero, L. and Conte, T. (2017). A Systematic Mapping Study on Research Contributions on UX Evaluation Technologies. In Proceedings of the XVI Brazilian Symposium on Human Factors in Computing Systems, IHC 2017, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3160504.3160512.

Ruotsalo, T., Peltonen, J., Eugster, M. J. A., Głowacka, D., Floréen, P., Myllymäki, P., Jacucci, G., and Kaski, S. (2018). Interactive Intent Modeling for Exploratory Search. ACM Transactions on Information Systems, 36(4):1–46. DOI: https://doi.org/10.1145/3231593.

Saga, R., Ohkusa, N., Yamashita, T., and Maki, N. (2017). Visualization of customer expectations from Web text using co-occurrence graph and auto-labeling in the service market. In VISIGRAPP 2017 - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, volume 3, pages 317–321. DOI: https://doi.org/10.5220/0006238303170321.

Saldana, J. (2013). The Coding Manual for Qualitative Researchers. SAGE Publications.

Segura, V., Ferreira, J. J., and Barbosa, S. D. J. (2018). BONNIE: Building Online Narratives from Noteworthy Interaction Events. In 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 233–238. DOI: https://doi.org/10.1109/VLHCC.2018.8506520.

Shamim, A., Balakrishnan, V., and Tahir, M. (2014). Evaluation of opinion visualization techniques. Information Visualization, 14(4):339–358. DOI: https://doi.org/10.1177/1473871614550537.

Shen, Z., Wei, J., Sundaresan, N., and Ma, K.-L. (2012). Visual analysis of massive web session data. In IEEE Symposium on Large Data Analysis and Visualization (LDAV), pages 65–72. DOI: https://doi.org/10.1109/LDAV.2012.6378977.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In VL ’96: Proceedings of the 1996 IEEE Symposium on Visual Languages, page 336. IEEE Computer Society. DOI: https://doi.org/10.1109/VL.1996.545307.

Soure, E. J., Kuang, E., Fan, M., and Zhao, J. (2022). CoUX: Collaborative Visual Analysis of Think-Aloud Usability Test Videos for Digital Interfaces. IEEE Transactions on Visualization and Computer Graphics, 28(1):643–653. DOI: https://doi.org/10.1109/TVCG.2021.3114822.

Stasko, J. (2014). Value-Driven Evaluation of Visualizations. In Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, BELIV ’14, pages 46–53, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2669557.2669579.

Sun, M., Convertino, G., and Detweiler, M. (2016). Designing a unified cloud log analytics platform. In Proceedings - 2016 International Conference on Collaboration Technologies and Systems, CTS 2016, pages 257–266. DOI: https://doi.org/10.1109/CTS.2016.0057.

Sykownik, P., Born, F., and Masuch, M. (2019). Can You Hear the Player Experience? A Pipeline for Automated Sentiment Analysis of Player Speech. In 2019 IEEE Conference on Games (CoG), pages 1–4. DOI: https://doi.org/10.1109/CIG.2019.8848096.

Victorelli, E. Z. and Reis, J. C. D. (2020). Human-Data Interaction Design Guidelines for Visualization Systems. In Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Systems, IHC ’20, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3424953.3426511.

Wall, E., Agnihotri, M., Matzen, L., Divis, K., Haass, M., Endert, A., and Stasko, J. (2019). A Heuristic Approach to Value-Driven Evaluation of Visualizations. IEEE Transactions on Visualization and Computer Graphics, 25(1):491–500. DOI: https://doi.org/10.1109/TVCG.2018.2865146.

Wallner, G., Halabi, N., and Mirza-Babaei, P. (2019). Aggregated Visualization of Playtesting Data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 1–12, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3290605.3300593.

Wallner, G. and Kriglstein, S. (2012). A spatiotemporal visualization approach for the analysis of gameplay data. In Conference on Human Factors in Computing Systems - Proceedings, pages 1115–1124. DOI: https://doi.org/10.1145/2207676.2208558.

Wallner, G. and Kriglstein, S. (2013). Visualization-based analysis of gameplay data - a review of literature. Entertainment Computing, 4(3):143–155. DOI: https://doi.org/10.1016/j.entcom.2013.02.002.

Wallner, G. and Kriglstein, S. (2014). PLATO: A visual analytics system for gameplay data. Computers & Graphics, 38:341–356. DOI: https://doi.org/10.1016/j.cag.2013.11.010.

Wallner, G. and Kriglstein, S. (2020). Multivariate Visualization of Game Metrics: An Evaluation of Hexbin Maps. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’20, pages 572–584, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3410404.3414233.

Wang, Y., Chen, Z., Li, Q., Ma, X., Luo, Q., and Qu, H. (2016). Animated Narrative Visualization for Video Clickstream Data. In SIGGRAPH ASIA 2016 Symposium on Visualization, SA ’16, pages 1–8, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3002151.3002155.

Watson, R. B. and Spyridakis, J. H. (2016). A Tool to Remotely Collect and Visualize Users’ Interactions with Web-Based Content. In Proceedings of the 34th ACM International Conference on the Design of Communication, SIGDOC ’16, pages 1–6, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2987592.2987601.

Więckowska, M. and Rudnicka, P. (2021). Visualising user–website interaction: description and evaluation of a teaching method. Universal Access in the Information Society, 22(2):297–313. DOI: https://doi.org/10.1007/s10209-021-00839-7.

Yen, Y.-C. G., Kim, J. O., and Bailey, B. P. (2020). Decipher: An Interactive Visualization Tool for Interpreting Unstructured Design Feedback from Multiple Providers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, pages 1–13, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3313831.3376380.

Yoo, S., Jeong, S., Kim, S., and Jang, Y. (2021). Saliency-based gaze visualization for eye movement analysis. Sensors, 21(15):5178. DOI: https://doi.org/10.3390/s21155178.

Zaina, L. A., Sharp, H., and Barroca, L. (2021). UX information in the daily work of an agile team: A distributed cognition analysis. International Journal of Human-Computer Studies, 147:102574. DOI: https://doi.org/10.1016/j.ijhcs.2020.102574.

Downloads

Additional Files

Published

2025-04-09

How to Cite

AMARAL, L. K. do; MACEDO, M.; ZAINA, L. What is the State of the Art on UX Data Visualization? A Systematic Mapping of the Literature. Journal on Interactive Systems, Porto Alegre, RS, v. 16, n. 1, p. 267–287, 2025. DOI: 10.5753/jis.2025.4487. Disponível em: https://journals-sol.sbc.org.br/index.php/jis/article/view/4487. Acesso em: 5 dec. 2025.

Issue

Section

Regular Paper