Beyond Acoustic Features: A Data-Driven Analysis of Music Consumption in Brazil

Authors

DOI:

https://doi.org/10.5753/jis.2025.5552

Keywords:

Music Consumption, Music Networks, Backbone Extraction, Spotify Charts, Computational Music Analysis

Abstract

In the competitive streaming era, understanding regional music consumption is vital, particularly in culturally diverse nations like Brazil. While extensive research exists on national music trends, prior studies have overlooked the nuanced local variations in musical tastes and acoustic characteristics. This study addresses that gap with a data-driven methodology examining genre preferences and acoustic attributes across Brazilian regions using Spotify Charts data from 2022–2023. Our computational approach involved constructing bipartite genre-city networks, applying backbone extraction to identify key preferences, and using temporal analysis to assess their stability. We employed clustering techniques to uncover regional acoustic patterns independent of genre and association rules mining to pinpoint common and exceptional listening behaviors. Finally, we analyzed artist similarity to determine the influence of geography versus genre. Our findings reveal that while core genre preferences remain largely stable across regions and time, significant distinctions emerge from acoustic analysis. We identified distinct city clusters with unique sonic profiles, defined by variations in attributes like liveliness, speechiness, and valence. This demonstrates that regional identity is not solely shaped by genre. Furthermore, our analysis shows that artist similarity is strongly influenced by cultural and geographical proximity. Although many listening behaviors are shared nationally, unique patterns appear in specific clusters, especially during major holidays. This study contributes a robust computational framework for modeling music consumption at a granular geographical level. The results provide valuable insights for artists, digital platforms, and industry professionals, highlighting how regional musical identities are shaped by a complex interplay of genre, acoustic features, and cultural factors.

Downloads

Download data is not yet available.

References

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, page 487–499, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Albuquerque, N., Valença, G., and Falcão, T. P. (2024). Investigating manipulative design on social media platforms - the case of kidinfluencers. Journal on Interactive Systems, 15(1):860–874. DOI: https://doi.org/10.5753/jis.2024.4271.

Ali, M. and Zannettou, S. (2024). From isolation to desolation: Investigating self-harm discussions in incel communities. Proceedings of the International AAAI Conference on Web and Social Media, 18(1):43–56. DOI: https://doi.org/10.1609/icwsm.v18i1.31296.

Araujo, C., Cristo, M., and Giusti, R. (2019). Predicting music popularity on streaming platforms. In Anais do XVII Simpósio Brasileiro de Computação Musical, pages 141–148, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/sbcm.2019.10436.

Barata, M. L. and Coelho, P. S. (2021). Music streaming services: understanding the drivers of customer purchase and intention to recommend. Heliyon, 7(8):e07783. DOI: https://doi.org/10.1016/j.heliyon.2021.e07783.

Barbosa, G., Melo, B., Oliveira, G., Silva, M., Seufitelli, D., and Moro, M. (2021). Hot streaks in the brazilian music market: A comparison between physical and digital eras. In Anais do XVIII Simpósio Brasileiro de Computação Musical, pages 152–159, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/sbcm.2021.19440.

Basaran, D. and Ventura, K. (2022). Exploring digital marketing in entertainment industry: A case of a digital music platform. Journal of Management Marketing and Logistics, 9(3):115–126. DOI: https://doi.org/10.17261/Pressacademia.2022.1635.

Bello, P. and Garcia, D. (2021). Cultural divergence in popular music: the increasing diversity of music consumption on spotify across countries. Humanities and Social Sciences Communications, 8(1):1–8. DOI: https://doi.org/10.1057/s41599-021-00855-1.

Berkers, P. (2012). Gendered scrobbling: Listening behaviour of young adults on last. fm. Interactions: Studies in Communication & Culture, 2(3):279–296. DOI: https://doi.org/10.1386/iscc.2.3.279_1.

Beuscart, J.-S., Coavoux, S., and Garrocq, J.-B. (2023). Listening to music videos on youtube. digital consumption practices and the environmental impact of streaming. Journal of Consumer Culture, 23(3):654–671. DOI: https://doi.org/10.1177/14695405221133266.

Coscia, M. (2021). Noise corrected sampling of online social networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2):1–21. DOI: https://doi.org/10.1145/3434749.

Dorfman, R. (1979). A formula for the Gini coefficient. The review of economics and statistics, pages 146–149. DOI: https://doi.org/10.2307/1924845.

Edmond, M. (2014). Here we go again: Music videos after youtube. Television & New Media, 15(4):305–320. DOI: https://doi.org/10.1177/1527476412465901.

Enriquez, F. (2022). Pernambuco and Bahia’s musical “war”. Luso-Brazilian Review, 59(1):22–60. DOI: https://doi.org/10.3368/lbr.59.1.22.

Ferraro, A., Serra, X., and Bauer, C. (2021). What is fair? exploring the artists’ perspective on the fairness of music streaming platforms. In IFIP conference on human-computer interaction, pages 562–584. Springer. DOI: https://doi.org/10.1007/978-3-030-85616-8_33.

Gomes Ferreira, C. H., Murai, F., Silva, A. P. C., Trevisan, M., Vassio, L., Drago, I., Mellia, M., and Almeida, J. M. (2022). On network backbone extraction for modeling online collective behavior. PLOS ONE, 17(9):1–36. DOI: https://doi.org/10.1371/journal.pone.0274218.

Grasse, J. (2021). Musical spaces and deep regionalism in Minas Gerais, Brazil. In Musical Spaces, pages 5–21. Jenny Stanford Publishing.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann.

Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the royal statistical society. series c (applied statistics), 28(1):100–108. DOI: https://doi.org/10.2307/2346830.

Hesmondhalgh, D. (2022). Streaming’s effects on music culture: Old anxieties and new simplifications. Cultural Sociology, 16(1):3–24. DOI: https://doi.org/10.1177/17499755211019974.

Howell, D. (2007). Statistical Methods for Psychology. Thomson Wadsworth.

Jiang, J., Ponnada, A., Li, A., Lacker, B., and Way, S. F. (2024). A genre-based analysis of new music streaming at scale. In Proceedings of the 16th ACM Web Science Conference, WEBSCI ’24, page 191–201, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3614419.3644002.

Jolliffe, I. T. and Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150202. DOI: https://doi.org/10.1098/rsta.2015.0202.

Lee, C. and Cunningham, P. (2012). The geographic flow of music. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 691–695. IEEE. DOI: https://doi.org/10.48550/arXiv.1204.2677.

Linhares, R. S., Rosa, J. M., Ferreira, C. H., Murai, F., Nobre, G., and Almeida, J. (2022). Uncovering coordinated communities on twitter during the 2020 us election. In International Conference on Advances in Social Networks Analysis and Mining). IEEE. DOI: https://doi.org/10.1109/ASONAM55673.2022.10068628.

Marcaccioli, R. and Livan, G. (2019). A pólya urn approach to information filtering in complex networks. Nature Communications, 10. DOI: https://doi.org/10.1038/s41467-019-08667-3.

Mondelli, M. L. B., Jr., L. M. R. G., and Ziviani, A. (2018). O que os países escutam: Analisando a rede de gêneros musicais ao redor do mundo. In Anais do VII Brazilian Workshop on Social Network Analysis and Mining, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/brasnam.2018.3586.

Morris, J. W. (2020). Music platforms and the optimization of culture. Social Media + Society, 6(3):2056305120940690. DOI: https://doi.org/10.1177/2056305120940690.

Moura, F., Ferreira, C., and Lima, H. (2024). Characterization of the brazilian musical landscape: a study of regional preferences based on the spotify charts. In Proceedings of the 30th Brazilian Symposium on Multimedia and the Web, pages 80–88, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/webmedia.2024.242290.

Murphy, S. (2020). Music marketing in the digital music industries – An autoethnographic exploration of opportunities and challenges for independent musicians. International Journal of Music Business Research, 9(1):7–40. DOI: https://doi.org/10.25905/21729104.v1.

Neal, Z. P. (2022). backbone: An R package to extract network backbones. PLOS ONE, 17(5):1–24. DOI: https://doi.org/10.1371/journal.pone.0269137.

Nisbet, R., Elder, J., and Miner, G. (2009). Handbook of Statistical Analysis and Data Mining Applications. Academic Press, Inc., USA. DOI: https://doi.org/10.1016/C2012-0-06451-4.

Oliveira, G. and Moro, M. (2023a). Exceptional collaboration patterns in music genre networks. In Anais do XII Brazilian Workshop on Social Network Analysis and Mining, pages 91–102, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/brasnam.2023.230516.

Oliveira, G. and Moro, M. (2023b). Mining exceptional genre patterns on hit songs. In Anais do XI Symposium on Knowledge Discovery, Mining and Learning, pages 97–104, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/kdmile.2023.232412.

Rahimi, R. A. and Park, K.-H. (2020). A comparative study of internet architecture and applications of online music streaming services: The impact on the global music industry growth. In 2020 8th International Conference on Information and Communication Technology (ICoICT), pages 1–6. DOI: https://doi.org/10.1109/ICoICT49345.2020.9166225.

Ren, J. and Kaufman, R. (2017). Understanding music track popularity in a social network. In Proceedings of the 25th European Conference on Information Systems ECIS, Guimarães, Portugal, June.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65. DOI: https://doi.org/10.1016/0377-0427(87)90125-7.

Serrano, M. Á., Boguná, M., and Vespignani, A. (2009). Extracting the multiscale backbone of complex weighted networks. Proceedings of the national academy of sciences, 106(16):6483–6488. DOI: https://doi.org/10.1073/pnas.0808904106.

Silva, M. O., Oliveira, G. P., Seufitelli, D. B., and Moro, M. M. (2023). Collaboration-aware hit song prediction. Journal on Interactive Systems, 14(1):201–214. DOI: https://doi.org/10.5753/jis.2023.3137.

Statista (2025). Number of music streaming subscribers worldwide from the 1st half of 2019 to 4th quarter 2024. [link]. Access on 23 September 2025.

Terroso-Saenz, F., Soto, J., and Muñoz, A. (2023). Music mobility patterns: How songs propagate around the world through spotify. Pattern Recognition, 143:109807. DOI: https://doi.org/10.1016/j.patcog.2023.109807.

Tricomi, P. P., Pajola, L., Pasa, L., and Conti, M. (2024). “All of Me”: Mining users’ attributes from their public spotify playlists. In Companion Proceedings of the ACM Web Conference 2024, WWW ’24, page 963–966, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3589335.3651459.

van Belle, G. (2011). Statistical Rules of Thumb. Wiley Series in Probability and Statistics. Wiley.

Vaz de Melo, G., Machado, A., and Carvalho, L. (2020). Music consumption in Brazil: an analysis of streaming reproductions. PragMATIZES - Revista Latino-Americana de Estudos em Cultura, 10:141. DOI: https://doi.org/10.22409/pragmatizes.v10i19.40565.

Way, S. F., Garcia-Gathright, J., and Cramer, H. (2020). Local trends in global music streaming. Proceedings of the International AAAI Conference on Web and Social Media, 14(1):705–714. DOI: https://doi.org/10.1609/icwsm.v14i1.7336.

Wolbert, J. (2023). Multiple brasilidades: Musician-market negotiations within the brazilian midstream. Journal of Popular Music Studies, 35(3):102–127. DOI: https://doi.org/10.1525/jpms.2023.35.3.102.

Downloads

Additional Files

Published

2025-09-23

How to Cite

MOURA, F. A. S.; FERREIRA, C. H. G.; LIMA, H. C. S. C. Beyond Acoustic Features: A Data-Driven Analysis of Music Consumption in Brazil. Journal on Interactive Systems, Porto Alegre, RS, v. 16, n. 1, p. 850–864, 2025. DOI: 10.5753/jis.2025.5552. Disponível em: https://journals-sol.sbc.org.br/index.php/jis/article/view/5552. Acesso em: 5 dec. 2025.

Issue

Section

Regular Paper

Most read articles by the same author(s)