Analyzing Accessibility, Usability, and User Experience in Mobile Apps Through User Reviews: An Extended Systematic Literature Review

Authors

DOI:

https://doi.org/10.5753/jis.2025.5983

Keywords:

Accessibility, Usability, User Experience, Mobile Applications, App Stores, User Reviews, Systematic Literature Review

Abstract

User reviews have become an essential source for evaluating quality attributes in mobile applications. Although prior research has examined privacy, security, and digital accessibility for people with disabilities through user feedback, comprehensive studies simultaneously analyzing accessibility, usability, and user experience (UX) through this lens remain scarce. This study expands on our earlier work by conducting a systematic literature review (SLR) to explore the connections between these three dimensions through user feedback analysis. From 670 studies published since 2013, we selected 42 for thematic analysis. The selected papers reflect the field’s multidisciplinary nature, encompassing computer science, health sciences, and social sciences, with most studies focusing on applications in both physical and mental health domains. The findings highlight accessibility as an ongoing challenge for users with disabilities and those with specific needs. Key results include: (i) a disparity between two positive and six negative accessibility factors; (ii) usability findings revealing six strengths (e.g., performance, design simplicity) but fourteen shortcomings (e.g., navigation difficulties, unintuitive interfaces); (iii) nine core UX elements, with accessibility and usability as central components; and (iv) thirty-three actionable recommendations for future research. This study provides a holistic understanding of how usability and UX improvements can enhance accessibility. The findings aim to assist developers and organizations in creating more inclusive mobile applications while guiding future research directions.

Downloads

Download data is not yet available.

References

Abrahao, A. L., Cavalcanti, A., Pereira, L., and Roque, L. (2014). Accessibility study of touch and gesture interaction with seniors. Journal on Interactive Systems, 5(2). DOI: https://doi.org/10.5753/jis.2014.647.

Adaji, I., Idoko, P., and Adisa, M. O. (2024). Insights from the review of apps that influence environmental sustainability. In Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, UMAP Adjunct ’24, page 154–159, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3631700.3664878.

Ahn, H. and Park, E. (2023). Motivations for user satisfaction of mobile fitness applications: An analysis of user experience based on online review comments. Humanities and Social Sciences Communications, 10(1):3. DOI: https://doi.org/10.1057/s41599-022-01452-6.

Algamdi, S., Albanyan, A., and Ludi, S. (2023). Investigating the usability issues in mobile applications reviews using a deep learning model. In 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), pages 0108–0113. DOI: https://doi.org/10.1109/CCWC57344.2023.10099350.

Aljedaani, W., Alkahtani, M., Ludi, S., Mkaouer, M. W., Eler, M. M., Kessentini, M., and Ouni, A. (2023). The state of accessibility in blackboard: Survey and user reviews case study. In Proceedings of the 20th International Web for All Conference, W4A ’23, page 84–95, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3587281.3587291.

Aljedaani, W., Mkaouer, M. W., Ludi, S., and Javed, Y. (2022). Automatic classification of accessibility user reviews in android apps. In 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA), pages 133–138. DOI: https://doi.org/10.1109/CDMA54072.2022.00027.

Alrayani, B., Kalkatawi, M., Abulkhair, M., and Abukhodair, F. (2024). From customer’s voice to decision-maker insights: Textual analysis framework for arabic reviews of saudi arabia’s super app. Applied Sciences, 14(16):6952. DOI: https://doi.org/10.3390/app14166952.

Anam, A. I. and Yeasin, M. (2013). Accessibility in smartphone applications: what do we learn from reviews? In Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS ’13, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2513383.2513421.

Apple Inc. (2025). App store review guidelines. [link]. Access on 27 April 2025.

Bowie-DaBreo, D., Sas, C., Iles-Smith, H., and Sünram-Lea, S. (2022). User perspectives and ethical experiences of apps for depression: A qualitative analysis of user reviews. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3491102.3517498.

Brito, L., Barbosa, I., Silva, M., Drumond, C., Melo, R., Guedes, D., Simões, J., and Sousa, L. (2025). Usability in ipc price collection application: Evaluation of interface and user experience. In Anais do XXI Simpósio Brasileiro de Sistemas de Informação, pages 683–692, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/sbsi.2025.246616.

Campos, A. E. S. and Zaina, L. (2024). Ux-rivis: Visualization of information about ux data based on app reviews. In Proceedings of the XXIII Brazilian Symposium on Human Factors in Computing Systems, IHC ’24, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3702038.3702087.

Campos, T., Castello, M., Damasceno, E., and Valentim, N. (2025). An updated systematic mapping study on usability and user experience evaluation of touchable holographic solutions. Journal on Interactive Systems, 16(1):172–198. DOI: https://doi.org/10.5753/jis.2025.4694.

Chaudhry, B. M. and Debi, H. R. (2024). User perceptions and experiences of an ai-driven conversational agent for mental health support. mHealth, 10(0). DOI: https://doi.org/10.21037/mhealth-23-55.

Da Costa Nunes, E. H., Ribeiro, G. V., Monteiro, I. T., and Gonçalves, E. (2024). Digital accessibility at the brazilian symposium on human factors in computing systems (ihc): An updated systematic literature review. In Proceedings of the XXII Brazilian Symposium on Human Factors in Computing Systems, IHC ’23, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3638067.3638075.

Darko, A. P., Antwi, C. O., Adjei, K., Zhang, B., and Ren, J. (2024). Predicting determinants influencing user satisfaction with mental health app: An explainable machine learning approach based on unstructured data. Expert Syst. Appl., 249(PB). DOI: https://doi.org/10.1016/j.eswa.2024.123647.

Di Sorbo, A., Panichella, S., Alexandru, C. V., Visaggio, C. A., and Canfora, G. (2017). Surf: Summarizer of user reviews feedback. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSEC), pages 55–58. DOI: https://doi.org/10.1109/ICSEC.2017.5.

Dos Santos, P. S. H., Oliveira, A. D. A., De Jesus, T. B. N., Aljedaani, W., and Eler, M. M. (2024). Evolution may come with a price: analyzing user reviews to understand the impact of updates on mobile apps accessibility. In Proceedings of the XXII Brazilian Symposium on Human Factors in Computing Systems, IHC ’23, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3638067.3638081.

Du, Y., Choe, S., Vega, J., Liu, Y., and Trujillo, A. (2022). Listening to stakeholders involved in speech-language therapy for children with communication disorders: Content analysis of apple app store reviews. JMIR Pediatr Parent, 5(1):e28661. DOI: https://doi.org/10.2196/28661.

Eler, M. M., Orlandin, L., and Oliveira, A. D. A. (2019). Do android app users care about accessibility? an analysis of user reviews on the google play store. In Proceedings of the 18th Brazilian Symposium on Human Factors in Computing Systems, IHC ’19, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3357155.3358477.

Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A., and Belgamo, A. (2016). Improvements in the start tool to better support the systematic review process. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, EASE ’16, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2915970.2916013.

Ganguly, R. and Dasari, N. (2024). Comparative study of ai-driven ed-tech applications: Insights from google play store data. In 2024 International Conference on TVET Excellence Development (ICTeD), pages 237–243. DOI: https://doi.org/10.1109/ICTeD62334.2024.10844660.

Google LLC (2025). Google play user content and comment posting policy. [link]. Access on 27 April 2025.

Guluzade, L. and Sas, C. (2024). Functionality and user review analysis of mobile apps for mindfulness eating and eating disorders. In Proceedings of the 2024 ACM Designing Interactive Systems Conference, DIS ’24, page 1350–1371, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3643834.3661521.

Haque, M. D. R. and Rubya, S. (2023). An overview of chatbot-based mobile mental health apps: Insights from app description and user reviews. JMIR Mhealth Uhealth, 11:e44838. DOI: https://doi.org/10.2196/44838.

Haque, M. R. and Rubya, S. (2022). "For an app supposed to make its users feel better, it sure is a joke" – an analysis of user reviews of mobile mental health applications. DOI: https://doi.org/10.48550/arXiv.2209.07796.

Heissler, R., Jonáš, J., Carre, N., Mostovoy, K., and Bunge, E. L. (2024). Can ai digital personas for well-being provide social support? a mixed-method analysis of user reviews. Human Behavior and Emerging Technologies, 2024(1):6738001. DOI: https://doi.org/10.1155/2024/6738001.

International Organization for Standardization (2018). Iso 9241-11:2018 - ergonomics of human-system interaction – part 11: Usability: Definitions and concepts. [link]. Access on 23 April 2025.

International Organization for Standardization (2019). Iso 9241-210:2019 - ergonomics of human-system interaction – part 210: Human-centred design for interactive systems. [link]. Access on 23 April 2025.

Jang, Y. and Park, E. (2022). Satisfied or not: user experience of mobile augmented reality in using natural language processing techniques on review comments. Virtual Reality, 26(3):839–848. DOI: https://doi.org/10.1007/s10055-021-00599-y.

Jo, E., Kouaho, W.-J., Schueller, S. M., and Epstein, D. A. (2023). Exploring user perspectives of and ethical experiences with teletherapy apps: Qualitative analysis of user reviews. JMIR Ment Health, 10:e49684. DOI: https://doi.org/10.2196/49684.

Kang, R. M. and Reynolds, T. L. (2024). “This app said I had severe depression, and now I don’t know what to do”: the unintentional harms of mental health applications. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI ’24, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3613904.3642178.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, EBSE Technical Report EBSE-2007-01. [link]. Access on 21 August 2025.

Li, R., Obie, H. O., and Khalajzadeh, H. (2022). An exploratory analysis of human-centric issues in parking solutions using surveys and mobile parking app reviews. In Proceedings of the 33rd Australian Conference on Human-Computer Interaction, OzCHI ’21, page 26–37, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3520495.3520496.

Li, X., Zhang, Z., and Stefanidis, K. (2018). Mobile app evolution analysis based on user reviews. In SoMeT. DOI: https://doi.org/10.3233/978-1-61499-900-3-773.

Lieser, T., Huang, Y., and Sezgin, E. (2022). The current state of mobile apps owned by large pediatric hospitals in the United States: Systematic search and analysis on Google Play and Apple app stores. JMIR Pediatr Parent, 5(4):e38940. DOI: https://doi.org/10.2196/38940.

Lobo, E. H., Abdelrazek, M., Frølich, A., Rasmussen, L. J., Livingston, P. M., Islam, S. M. S., Kensing, F., and Grundy, J. (2023). Detecting user experience issues from mhealth apps that support stroke caregiver needs: an analysis of user reviews. Frontiers in Public Health, 11. DOI: https://doi.org/10.3389/fpubh.2023.1027667.

Maharjan, R., Doherty, K., Rohani, D. A., Bækgaard, P., and Bardram, J. E. (2022). What’s up with these conversational health agents? From users’ critiques to implications for design. Frontiers in Digital Health, Volume 4 - 2022. DOI: https://doi.org/10.3389/fdgth.2022.840232.

Malik, T., Ambrose, A. J., and Sinha, C. (2022). Evaluating user feedback for an artificial intelligence–enabled, cognitive behavioral therapy–based mental health app (Wysa): Qualitative thematic analysis. JMIR Hum Factors, 9(2):e35668. DOI: https://doi.org/10.2196/35668.

Mariano, P. A. d. L., Souza, A. C. R. d., Guerino, G. C., Chaves, A. P., and Valentim, N. M. C. (2024). A systematic mapping study about technologies for hedonic aspects evaluation in text-based chatbots. Journal on Interactive Systems, 15(1):875–896. DOI: https://doi.org/10.5753/jis.2024.4350.

Masruroh, S. U., Rizqy Vitalaya, N. A., Sukmana, H. T., Subchi, I., Khairani, D., and Durachman, Y. (2022). Evaluation of usability and accessibility of mobile application for people with disability: Systematic literature review. In 2022 International Conference on Science and Technology (ICOSTECH), pages 1–7. DOI: https://doi.org/10.1109/ICOSTECH54296.2022.9829134.

Mateus, D. A., Silva, C. A., de Oliveira, A. F. B. A., Costa, H., and Freire, A. P. (2021). A systematic mapping of accessibility problems encountered on websites and mobile apps: A comparison between automated tests, manual inspections and user evaluations. Journal on Interactive Systems, 12(1):145–171. DOI: https://doi.org/10.5753/jis.2021.1778.

Melo, G. L. N., Menezes, N. d. S., Maciel, A. C. d. S., Teran, L. A., Rocha, T. A. d., Souza, C. R. B. d., and Mota, M. P. (2024). Accessibility issues in establishing awareness on remote collaborative software development. Journal on Interactive Systems, 15(1):294–310. DOI: https://doi.org/10.5753/jis.2024.3802.

Memon, Z. A., Munawar, N., and Kamal, M. (2023). App store mining for feature extraction: analyzing user reviews. Acta Scientiarum. Technology, 46(1):e62867. DOI: https://doi.org/10.4025/actascitechnol.v46i1.62867.

Nakamura, W., Oliveira, E., Redmiles, D., Oliveira, E., and Conte, T. (2023). O que afeta a UX em aplicações móveis? Um resumo de um mapeamento sistemático da literatura sobre fatores que afetam a UX em reviews de lojas de aplicativos. In Anais Estendidos do XXII Simpósio Brasileiro de Fatores Humanos em Sistemas Computacionais, pages 261–265, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.5753/ihc_estendido.2023.233724.

Nakamura, W. T., C. de Oliveira, E. C., H. T. de Oliveira, E., and Conte, T. (2024). UX-mapper: A user experience method to analyze app store reviews. In Proceedings of the XXII Brazilian Symposium on Human Factors in Computing Systems, IHC ’23, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3638067.3638109.

Nakamura, W. T., Oliveira, E. C. C. d., Oliveira, E. H. T. d., and Conte, T. (2025). UX-mapper: An automated approach to analyze app store reviews with a focus on UX. Journal on Interactive Systems, 16(1):54–74. DOI: https://doi.org/10.5753/jis.2025.4099.

Nellore, N., Mishra, T., and Zimmer, M. (2024). Unveiling user perspectives: Exploring themes in femtech mobile app reviews for enhanced usability and privacy. Proc. ACM Hum.-Comput. Interact., 8(MHCI). DOI: https://doi.org/10.1145/3676530.

Nielsen, J. (2012). Usability 101: Introduction to usability. [link]. Access on 23 April 2025.

Okuboyejo, S., Han, S., Jha, S., Eneja, C., and and, R. O. (2025). Insights from user reviews to improve suicide prevention apps: A machine learning and thematic analysis-based approach. International Journal of Human–Computer Interaction, 0(0):1–21. DOI: https://doi.org/10.1080/10447318.2025.2476711.

Oliveira, A. and Eler, M. (2024). Exploring accessibility of mobile applications through user feedback: Insights from app reviews in a systematic literature review. In Anais do XXIII Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais, pages 633–647, Porto Alegre, RS, Brasil. SBC. DOI: https://doi.org/10.1145/3702038.3702094.

Oliveira, A. D. A., Dos Santos, P. S. H., Marcílio Júnior, W. E., Aljedaani, W. M., Eler, D. M., and Eler, M. M. (2023). Analyzing accessibility reviews associated with visual disabilities or eye conditions. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3544548.3581315.

Oliveira, A. D. A., Santos, P. S. H. d., Aljedaani, W., and Eler, M. M. (2024). Exploring the influence of software evolution on mobile app accessibility: Insights from user reviews. Journal of the Brazilian Computer Society, 30(1):584–607. DOI: https://doi.org/10.5753/jbcs.2024.4321.

Oyebode, O., Alqahtani, F., and Orji, R. (2020). Using machine learning and thematic analysis methods to evaluate mental health apps based on user reviews. IEEE Access, 8:111141–111158. DOI: https://doi.org/10.1109/ACCESS.2020.3002176.

Palomba, F., Linares-Vásquez, M., Bavota, G., Oliveto, R., Di Penta, M., Poshyvanyk, D., and De Lucia, A. (2015). User reviews matter! Tracking crowdsourced reviews to support evolution of successful apps. In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 291–300. DOI: https://doi.org/10.1109/ICSM.2015.7332475.

Palomba, F., Linares-Vásquez, M., Bavota, G., Oliveto, R., Penta, M. D., Poshyvanyk, D., and Lucia, A. D. (2018). Crowdsourcing user reviews to support the evolution of mobile apps. Journal of Systems and Software, 137:143–162. DOI: https://doi.org/10.1016/j.jss.2017.11.043.

Park, J. Y. E., Li, J., Howren, A., Tsao, N. W., and De Vera, M. (2019). Mobile phone apps targeting medication adherence: Quality assessment and content analysis of user reviews. JMIR Mhealth Uhealth, 7(1):e11919. DOI: https://doi.org/10.2196/11919.

Pelloni, L., Grano, G., Ciurumelea, A., Panichella, S., Palomba, F., and Gall, H. C. (2018). Becloma: Augmenting stack traces with user review information. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 522–526. DOI: https://doi.org/10.1109/SANER.2018.8330252.

Reyes Arias, J. E., Kurtzhall, K., Pham, D., Mkaouer, M. W., and Elglaly, Y. N. (2022). Accessibility feedback in mobile application reviews: A dataset of reviews and accessibility guidelines. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, CHI EA ’22, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3491101.3519625.

Rodrigues Lima De Aguiar, A. C., Melo Alves, L. E., Melo Feliciano De Sá, F., and Costa Aguiar, Y. P. (2024). What do Portuguese-Libras automatic translation application users care about? An analysis of user comments to improve application accessibility by the quality assurance team. In Proceedings of the XI Latin American Conference on Human Computer Interaction, CLIHC ’23, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3630970.3631069.

Santiago, M. T. and Marques, A. B. (2022). Are user reviews useful for identifying accessibility issues that autistic users face? An exploratory study. In Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems, IHC ’22, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3554364.3559114.

Santiago, M. T. and Marques, A. B. (2023). Exploring user reviews to identify accessibility problems in applications for autistic users. Journal on Interactive Systems, 14(1):317–330. DOI: https://doi.org/10.5753/jis.2023.3238.

Seon Hong Lee, Haein Lee, J. H. K. (2022). Enhancing the prediction of user satisfaction with metaverse service through machine learning. Computers, Materials & Continua, 72(3):4983–4997. DOI: https://doi.org/10.32604/cmc.2022.027943.

Silveira, L. A. d., Aljedaani, W., and Eler, M. M. (2024). Strategic insights into integrating accessibility in software development: Motivations, barriers, commitments, and business value. In Proceedings of the Brazilian Symposium on Human Factors (IHC), pages 1–14. ACM. DOI: https://doi.org/10.1145/3702038.3702108.

Syukron, M., Madugalla, A., Shahin, M., and Grundy, J. (2024). A comprehensive study of disaster support mobile apps. DOI: https://doi.org/10.48550/arXiv.2407.08145.

Tavares, D., Lobato, S., Rodrigues, K., Sacramento, C., Faria, M., and Gouveia, Y. (2024). Acessibilidade nas mídias sociais para pessoas com deficiência visual. In Minicursos do IHC 2024. Sociedade Brasileira de Computação. DOI: https://doi.org/10.5753/sbc.16123.0.1.

Wang, X., Zhang, T., Tan, Y., Shang, W., and Li, Y. (2024). How to effectively mine app reviews concerning software ecosystem? A survey of review characteristics. Journal of Systems and Software, 213:112040. DOI: https://doi.org/10.1016/j.jss.2024.112040.

Wang, Y., Liu, Y., Shi, Y., Yu, Y., and Yang, J. (2020). User perceptions of virtual hospital apps in China: Systematic search. JMIR Mhealth Uhealth, 8(8):e19487. DOI: https://doi.org/10.2196/19487.

Widnall, E., Grant, C. E., Wang, T., Cross, L., Velupillai, S., Roberts, A., Stewart, R., Simonoff, E., and Downs, J. (2020). User perspectives of mood-monitoring apps available to young people: Qualitative content analysis. JMIR Mhealth Uhealth, 8(10):e18140. DOI: https://doi.org/10.2196/18140.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, EASE ’14, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/2601248.2601268.

World Health Organization (2025). Global report on health equity for persons with disabilities. [link]. Access on 20 August 2025.

Zhou, J., Arriaga, R. I., Liu, H., and Huang, M. (2022). A tale of two perspectives: Harvesting system views and user views to understand patient portal engagement. In 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI), pages 373–383. DOI: https://doi.org/10.1109/ICHI54592.2022.00059.

Zhou, X., Jin, Y., Zhang, H., Li, S., and Huang, X. (2016). A map of threats to validity of systematic literature reviews in software engineering. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), pages 153–160. DOI: https://doi.org/10.1109/APSEC.2016.031.

Downloads

Published

2025-08-23

How to Cite

OLIVEIRA, A. D. A.; ELER, M. M. Analyzing Accessibility, Usability, and User Experience in Mobile Apps Through User Reviews: An Extended Systematic Literature Review. Journal on Interactive Systems, Porto Alegre, RS, v. 16, n. 1, p. 641–665, 2025. DOI: 10.5753/jis.2025.5983. Disponível em: https://journals-sol.sbc.org.br/index.php/jis/article/view/5983. Acesso em: 5 dec. 2025.

Issue

Section

Regular Paper