Distributed Computational Model in Real-Time Massively Multiplayer Online Environment

Authors

  • Anderson S. Carapiá Centro Universitário Jorge Amado (UNIJORGE) / Centro Universitário SENAI CIMATEC
  • Márcio R. B. Soussa Centro Universitário Jorge Amado (UNIJORGE) / Centro Universitário SENAI CIMATEC
  • Leonardo S. A. da Silva Centro Universitário Jorge Amado (UNIJORGE)

DOI:

https://doi.org/10.5753/reic.2024.2392

Keywords:

Online Games, Distributed Systems, Network Architecture, Optimization

Abstract

The digital games universe has been gaining even more space and fans, and among various styles is worth noticing the importance of those which are multiplayer. In general terms, those games depend on complex server infrastructures and online availability across the planet to attend and distribute all of their players’ information. This implies, beside the delay due to geographic distance itself between player and server, the dependence of availability. The objective of this work is to present an alternative to these problems, by using group communication techniques on distributed systems, bringing the game experience closer to the users, without losing the Multiplayer Massive Online (MMO) game aspect. In one of the tests carried out, using the prototype developed and presented in this work, it was possible to notice a reduction in the message exchange time, from approximately 262 ms (106 + 156 ms) to approximately 190 ms, representing a gain of around 27%.

Downloads

Download data is not yet available.

References

Abdulazeez, S. A. and El Rhalibi, A. (2019). Dynamic Load Balancing for Massively Multiplayer Online Games Using OPNET. Computer Science: Transactions on Edutainment, XV. pp. 177-191. ISSN 1867-7207.

Amir, Y., Amir-Miskin, M., Stanton, J., and Schultz, J. (2021). Spread toolkit. Acesso em 27/11/2021. Disponı́vel em [link]

BarraDois (2019). Portal de notı́cias sobre world of warcraft. Acesso em 18/04/2021. Disponı́vel em [link]

Baset, S. A. and Schulzrinne, H. (2004). An analysis of the skype peer-to-peer internet telephony protocol. Acesso em 05/04/2021. Disponı́vel em [link]

Kim, Y. (2017). A study of optimal spatial partition size and field of view in massively multiplayer online game server. In International Journal of Applied Engineering Research. Research India Publications. Acesso em 18/04/2021. Disponı́vel em [link]

Laurence, F. (2024). Faturamento do setor de jogos eletrônicos deve crescer 2,1 Acesso em 13/01/2025. Disponı́vel em [link]

Lebres, I., Rita, P., Moro, S., and Ramos, P. (2018). Factors determining player drop-out in massive multiplayer online games. Acesso em 03/05/2021. Disponı́vel em [link]

López, C. A. M., Parra, O. J. S., and Torres, A. G. (2016). Networks and their traffic in multiplayer games. In International Journal of Applied Engineering Research. Revista Cientı́fica. Acesso em 18/04/2021. Disponı́vel em [link]

Needleman, S. E. (2020). From ‘fall guys’ to ‘among us,’ how america turned to video-games under lockdown. Acesso em 10/05/2021. Disponı́vel em [link]

Newzoo (2020). Global players per year. Acesso em 18/04/2021. Disponı́vel em [link]

Reinheimer, P., Roberts, W., Moore, A., Gemma, A., Vihuri, M., and McKewan, L. (2021). Global ping statistics. Acesso em 27/11/2021. Disponı́vel em [link]

Reis, R. H. (2018). Diminuição de Latência em Jogos Multijogador Utilizando Conexões Auxiliares P2P. 46 p. Monografia (Graduação em Ciência da Computação) - Universidade Federal do Rio Grande do Sul, Rio Grande do Sul. Acesso em 18/04/2021. Disponı́vel em [link]

Published

2024-12-30

How to Cite

S. Carapiá, A., R. B. Soussa, M., & S. A. da Silva, L. (2024). Distributed Computational Model in Real-Time Massively Multiplayer Online Environment. Electronic Journal of Undergraduate Research on Computing, 22(1), 137–145. https://doi.org/10.5753/reic.2024.2392

Issue

Section

Full Papers