Evaluating a Personalized Multicriteria and Multimodal Routing Service for Smart Cities
DOI:
https://doi.org/10.5753/reic.2024.4648Abstract
As the demand for urban mobility grows, more services are emerging that offer routing and route suggestions. However, these services often focus only on travel time or distance, leaving users’ individual preferences aside. This study presents an innovative route selection system that is multimodal and personalized, considering user preferences, vehicle emissions, and associated costs. This approach seeks to identify route options that are economical, fast, and safe, highlighting the inclusion of a variety of transport modes to meet the needs of both drivers and passengers.
Downloads
References
Afrin, T. and Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11):4660.
Brito, M., Martins, B., Santos, C., Medeiros, I., Araújo, F., Seruffo, M., Oliveira, H., Cerqueira, E., and Rosário, D. (2023). Personalized experience-aware multi-criteria route selection for smart mobility. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 504–517. SBC.
Brito, M., Santos, C., Oliveira, H., Cerqueira, E., and Rosário, D. (2022). Air pollution calculation for location based social networks multimodal routing service. In Proceedings of the 6th Urban Computing Workshop, pages 280–293, Porto Alegre, RS, Brasil. SBC.
Ferreira, A. P., Silva, T. H., and Loureiro, A. A. (2020). Uncovering spatiotemporal and semantic aspects of tourists mobility using social sensing. Computer Communications, 160:240–252.
HERE (2023). Build apps with here maps api and sdk platform access: Here developer.
Hörcher, D. and Tirachini, A. (2021). A review of public transport economics. Economics of transportation, 25:100196.
IPCC and Houghton, J. (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Greenhouse Gas Inventory Workbook. OECD.
Kalajdjieski, J., Zdravevski, E., Corizzo, R., Lameski, P., Kalajdziski, S., Pires, I. M., Garcia, N. M., and Trajkovik, V. (2020). Air pollution prediction with multi-modal data and deep neural networks. Remote Sensing, 12(24):4142.
Rodrigues, D., Santos, F., Rocha Filho, G., Akabane, A., Cabral, R., Immich, R., L. Junior, W., Cunha, F., Guidoni, D., Silva, T., Rosário, D., Cerqueira, E., Loureiro, A., and Villas, L. (2019). Computação urbana da teoria à prática: Fundamentos, aplicações e desafios. In Minicursos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 51–91. SBC.
Rodrigues, D. O., Boukerche, A., Silva, T. H., Loureiro, A. A., and Villas, L. A. (2018a). Combining taxi and social media data to explore urban mobility issues. Computer Communications, 132:111–125.
Rodrigues, D. O., Fernandes, J. T., Curado, M., and Villas, L. A. (2018b). Hybrid context-aware multimodal routing. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 2250–2255. IEEE.
Santos, C., Brito, M., Cerqueira, E., and Rosário, D. (2024). Análise de um sistema de roteamento personalizado multimodal e multicritério com Ênfase em plataformas de redes sociais baseadas em localização. VII Workshop de Trabalhos de Iniciação Científica e de Graduação (WTG).
Zou, B., Li, S., Zheng, Z., Zhan, B. F., Yang, Z., and Wan, N. (2020). Healthier routes planning: A new method and online implementation for minimizing air pollution exposure risk. Computers, Environment and Urban Systems, 80:101456.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.