Quantum Multiplexer Simplification for Quantum Software Compilation
DOI:
https://doi.org/10.5753/reic.2025.6055Keywords:
Quantum Computing, Quantum Compiling, Separable States, Multiplexer OptimizationAbstract
Quantum state initialization is one of the main routines in the quantum software compilation process. However, the cost of this step can compromise the overall computing efficiency. This work proposes an optimization method for the initialization of states that can be factored into smaller states. This purpose is achieved by removing unnecessary operators and controls for quantum multiplexers. The proposed approach is competitive with other techniques in the literature in terms of the total number of CNOTs. Furthermore, the classical processing time of the method proposed here is significantly lower than that of other works that optimize this type of initialization.
Downloads
References
Araujo, I. F., Blank, C., Araújo, I. C. S., and da Silva, A. J. (2024). Low-rank quantum state preparation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 43(1):161–170. DOI: 10.1109/tcad.2023.3297972.
Araujo, I. F., Park, D. K., Petruccione, F., and da Silva, A. J. (2021). A divide-and-conquer algorithm for quantum state preparation. Scientific Reports, 11(1):6329. DOI: 10.1038/s41598-021-85474-1.
Bergholm, V., Vartiainen, J. J., Möttönen, M., and Salomaa, M. M. (2005). Quantum circuits with uniformly controlled one-qubit gates. Phys. Rev. A, 71:052330. DOI: 10.1103/PhysRevA.71.052330.
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. DOI: 10.48550/arXiv.quant-ph/9605043.
Hughes, R. J., James, D. F. V., Knill, E. H., Laflamme, R., and Petschek, A. G. (1996). Decoherence bounds on quantum computation with trapped ions. Phys. Rev. Lett., 77:3240–3243. DOI: 10.1103/PhysRevLett.77.3240.
Kim, Y., Eddins, A., Anand, S., Wei, K., Berg, E., Rosenblatt, S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., and Kandala, A. (2023). Evidence for the utility of quantum computing before fault tolerance. Nature, 618:500–505. DOI: 10.1038/s41586-023-06096-3.
Mottonen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M. M. (2004). Transformation of quantum states using uniformly controlled rotations. DOI: 10.48550/arXiv.quant-ph/0407010.
Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka, T., Tezuka, H., Mitsuda, N., and Yamamoto, N. (2022). Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Physical Review Research, 4(2):023136. DOI: 10.1103/PhysRevResearch.4.023136.
Park, D. K., Petruccione, F., and Rhee, J.-K. K. (2019). Circuit-based quantum random access memory for classical data. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-40439-3.
Plesch, M. and Brukner, i. c. v. (2011). Quantum-state preparation with universal gate decompositions. Phys. Rev. A, 83:032302. DOI: 10.1103/PhysRevA.83.032302.
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2:79. DOI: 10.22331/q-2018-08-06-79.
Shende, V., Bullock, S., and Markov, I. (2006). Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010. DOI: 10.1109/tcad.2005.855930.
Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509. DOI: 10.1137/s0097539795293172.
Wootters, W. K., Wootters, W. K., and Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299:802–803. DOI: 10.1038/299802a0.
Wu, Y. et al. (2021). Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 127:180501. DOI: 10.1103/PhysRevLett.127.180501.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
