Matrix Compression with Support for Algebraic Operations in Small Space

Authors

DOI:

https://doi.org/10.5753/reic.2025.6146

Keywords:

Compression Algorithms, Matrix Compression, Compressed Linear Algebra, Matrix Multiplication, Grammar Compression

Abstract

This work investigates strategies to reduce memory consumption in matrix compression supporting algebraic operations directly on the compressed representation. In particular, we show how to modify the method mm-RePair [Ferragina et al., 2022] by performing the compression of large matrices in a partitioned manner, dividing them into blocks of consecutive rows, which are processed sequentially using less memory. The proposed method preserves support for multiplication operations on the compressed data and, although it causes a slight degradation in compression ratio, significantly reduces memory consumption as the number of blocks increases, enabling its application in scenarios where the matrix is larger than the available memory.

Downloads

Download data is not yet available.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. DOI: 10.48550/arXiv.1603.04467.

Bhattacherjee, S., Deshpande, A., and Sussman, A. (2014). Pstore: an efficient storage framework for managing scientific data. In Jensen, C. S., Lu, H., Pedersen, T. B., Thomsen, C., and Torp, K., editors, Conference on Scientific and Statistical Database Management, SSDBM ’14, Aalborg, Denmark, June 30 - July 02, 2014, pages 25:1–25:12. ACM. DOI: 10.1145/2618243.2618268.

Elgohary, A., Boehm, M., Haas, P. J., Reiss, F. R., and Reinwald, B. (2018). Compressed linear algebra for large-scale machine learning. VLDB J., 27(5):719–744. DOI: 10.1007/S00778-017-0478-1.

Elgohary, A., Boehm, M., Haas, P. J., Reiss, F. R., and Reinwald, B. (2019). Compressed linear algebra for declarative large-scale machine learning. Commun. ACM, 62(5):83–91. DOI: 10.1145/3318221.

Ferragina, P., Manzini, G., Gagie, T., Köppl, D., Navarro, G., Striani, M., and Tosoni, F. (2022). Improving matrix-vector multiplication via lossless grammar-compressed matrices. Proc. VLDB Endow., 15(10):2175–2187. DOI: 10.14778/3547305.3547321.

Larsson, N. J. and Moffat, A. (1999). Offline dictionary-based compression. In Data Compression Conference, DCC 1999, Snowbird, Utah, USA, March 29-31, 1999, pages 296–305. IEEE Computer Society. DOI: 10.1109/DCC.1999.755679.

Navarro, G. (2016). Compact Data Structures - A Practical Approach. Cambridge University Press.

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

Published

2025-07-09

How to Cite

Resende, F. C. O., & Louza, F. A. (2025). Matrix Compression with Support for Algebraic Operations in Small Space. Electronic Journal of Undergraduate Research on Computing, 23(1), 91–97. https://doi.org/10.5753/reic.2025.6146

Issue

Section

Full Papers