Analysis of REDD+ Projects with Carbon Credit Management under Blockchain

Authors

DOI:

https://doi.org/10.5753/reic.2025.6200

Keywords:

REDD, Blockchain, Carbon Credit, Carbon Market

Abstract

The credibility of Reducing Emissions from Deforestation and Forest Degradation (REDD+) projects depends on the implementation of transparent monitoring, reporting, and verification (MRV) mechanisms. To address this issue, Blockchain technology has been considered in new REDD+ projects, as it may increase trust, traceability, and automation for carbon credit management. In this context, this paper comparatively analyzes three REDD+ projects with carbon credit management on Blockchain: Ambify, MCO2 and TreeCycle. This analysis considers three performance metrics: average traffic consumed for block completion, average block completion time, and systemic security. The first two metrics are measured from computational simulations, while the third metric is evaluated theoretically. The final results demonstrate that the Ambify project has the best overall performance, making its architecture the most competitive among the three projects analyzed. As its main contribution, this research reveals theoretical and practical subsidies that can be used for the analysis and development of new REDD+ projects. Conclusions and future work conclude this paper.

Downloads

Download data is not yet available.

References

Aguiar, M. C. d. (2018). O mercado voluntário de car­bono florestal: o caso do redd+ no brasil. Disponível em: [link].

Ambipar Group (2021). Ambify project - whitepaper. Disponível em: [link].

Aminzade, M. (2018). Confidentiality, integrity and avai­lability – finding a balanced IT framework. Network Se­curity, 2018(5):9–11. DOI: 10.1016/S1353-4858(18)30043-6.

Bamakan, S. M. H., Motavali, A., and Bondarti, A. B. (2020). A survey of blockchain consensus algorithms performance evaluation criteria. Expert Systems with Applications, 154:113385. DOI: 10.1016/j.eswa.2020.113385.

Global Tree Project (2019). Treecycle - whitepa­per. Disponível em: [link].

He, Z. and Turner, P. (2022). Blockchain applications in forestry: A systematic literature review. Applied Sciences, 12(8):3723. DOI: 10.3390/app12083723.

Howson, P. (2019). Tackling climate change with block­chain. Nature Climate Change, 9(9):644–645. DOI: 10.1038/s41558-019-0567-9.

Howson, P., Oakes, S., Baynham-Herd, Z., and Swords, J. (2019). Cryptocarbon: The promises and pitfalls of fo­rest protection on a blockchain. Geoforum, 100:1–9. DOI: 10.1016/j.geoforum.2019.02.011.

Jelurida Swiss SA (2017). Ignis whitepaper. Disponível em: [link].

Kotsialou, G., Kuralbayeva, K., and Laing, T. (2021). Forest carbon offsets over a smart ledger. Available at SSRN 3945521. DOI: 10.2139/ssrn.3945521.

Kotsialou, G., Kuralbayeva, K., and Laing, T. (2022). Blockchain’s potential in forest offsets, the voluntary carbon mar­kets and redd+. Environmental Conservation, 49(3):137–145. DOI: 10.1017/S0376892922000157.

Marke, A., Mehling, M., and de Andrade Correa, F. (2022). Governing carbon markets with distributed ledger techno­logy. Cambridge University Press.

Moss.Earth (2020). Moss carbon credit mco2 token - whitepaper. Disponível em: [link].

Neves, R. F. D. (2025). Blockchain e mercado voluntário de carbono redd+ jurisdicional no sistema de incentivo a serviços ambientais do acre. Disponível em: [link].

Pervez, H., Muneeb, M., Irfan, M. U., and Haq, I. U. (2018). A comparative analysis of dag-based blockchain archi­tectures. 12th International conference on open source systems and technologies (ICOSST), pages 27–34. DOI: 10.1109/ICOSST.2018.8632193.

Rashidibajgan, S. and Hupperich, T. (2024). Utili­zing blockchains in opportunistic networks for integrity and confidentiality. Blockchain: Re­search and Applications, 5(1):100167. DOI: 10.1016/j.bcra.2023.100167.

Reinsberg, B. (2019). Blockchain technology and the gover­nance of foreign aid. Journal of Institutional Economics, 15(3):413–429. DOI: 10.1017/S1744137418000462.

Rodrigues, C. K. S. (2021). Analyzing Blockchain integra­ted architectures for effective handling of IoT-ecosystem transactions. Computer Networks, 201:108610. DOI: 10.1016/j.comnet.2021.108610.

Rodrigues, C. K. S. (2024). Bases de dados distri­buídas para aplicações computacionais: Estudo e se­leção de tecnologias de registros distribuídos. iSys-Brazilian Journal of Information Systems, 17(1):12–1. DOI: 10.5753/isys.2024.4384.

Tchernykh, A., Schwiegelsohn, U., ghazali Talbi, E., and Babenko, M. (2019). Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability. Journal of Computational Science, 36:100581. DOI: 10.1016/j.jocs.2016.11.011.

Vilkov, A. and Tian, G. (2023). Blockchain’s scope and purpose in carbon markets: A systematic literature review. Sustainability, 15(11):8495. DOI: 10.3390/su15118495.

Vukolić, M. (2015). The quest for scalable blockchain fa­bric: Proof-of-work vs. bft replication. In International workshop on open problems in network security, pages 112–125. Springer. DOI: 10.1007/978-3-319-39028-4_9.

Werth, J., Berenjestanaki, M. H., Barzegar, H. R., El Io­ini, N., and Pahl, C. (2023). A review of blockchain platforms based on the scalability, security and decen­tralization trilemma. ICEIS (1), pages 146–155. DOI: 10.5220/0011837200003467.

Xiao, Y., Zhang, N., Lou, W., and Hou, Y. T. (2020). A survey of distributed consensus protocols for blockchain networks. IEEE communications surveys & tutorials, 22(2):1432–1465. DOI: 10.1109/COMST.2020.2969706.

Yajam, H., Ebadi, E., and Akhaee, M. A. (2023). Jabs: a blockchain simulator for researching consensus algorithms. IEEE Transactions on Network Science and Engineering, 11(1):3–13. DOI: 10.1109/TNSE.2023.3282916.

Published

2025-11-06

How to Cite

Caburlão, M. C., & Rodrigues, C. K. da S. (2025). Analysis of REDD+ Projects with Carbon Credit Management under Blockchain. Electronic Journal of Undergraduate Research on Computing, 23(1), 253–264. https://doi.org/10.5753/reic.2025.6200

Issue

Section

Full Papers