Analysis of REDD+ Projects with Carbon Credit Management under Blockchain
DOI:
https://doi.org/10.5753/reic.2025.6200Keywords:
REDD, Blockchain, Carbon Credit, Carbon MarketAbstract
The credibility of Reducing Emissions from Deforestation and Forest Degradation (REDD+) projects depends on the implementation of transparent monitoring, reporting, and verification (MRV) mechanisms. To address this issue, Blockchain technology has been considered in new REDD+ projects, as it may increase trust, traceability, and automation for carbon credit management. In this context, this paper comparatively analyzes three REDD+ projects with carbon credit management on Blockchain: Ambify, MCO2 and TreeCycle. This analysis considers three performance metrics: average traffic consumed for block completion, average block completion time, and systemic security. The first two metrics are measured from computational simulations, while the third metric is evaluated theoretically. The final results demonstrate that the Ambify project has the best overall performance, making its architecture the most competitive among the three projects analyzed. As its main contribution, this research reveals theoretical and practical subsidies that can be used for the analysis and development of new REDD+ projects. Conclusions and future work conclude this paper.
Downloads
References
Aguiar, M. C. d. (2018). O mercado voluntário de carbono florestal: o caso do redd+ no brasil. Disponível em: [link].
Ambipar Group (2021). Ambify project - whitepaper. Disponível em: [link].
Aminzade, M. (2018). Confidentiality, integrity and availability – finding a balanced IT framework. Network Security, 2018(5):9–11. DOI: 10.1016/S1353-4858(18)30043-6.
Bamakan, S. M. H., Motavali, A., and Bondarti, A. B. (2020). A survey of blockchain consensus algorithms performance evaluation criteria. Expert Systems with Applications, 154:113385. DOI: 10.1016/j.eswa.2020.113385.
Global Tree Project (2019). Treecycle - whitepaper. Disponível em: [link].
He, Z. and Turner, P. (2022). Blockchain applications in forestry: A systematic literature review. Applied Sciences, 12(8):3723. DOI: 10.3390/app12083723.
Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9(9):644–645. DOI: 10.1038/s41558-019-0567-9.
Howson, P., Oakes, S., Baynham-Herd, Z., and Swords, J. (2019). Cryptocarbon: The promises and pitfalls of forest protection on a blockchain. Geoforum, 100:1–9. DOI: 10.1016/j.geoforum.2019.02.011.
Jelurida Swiss SA (2017). Ignis whitepaper. Disponível em: [link].
Kotsialou, G., Kuralbayeva, K., and Laing, T. (2021). Forest carbon offsets over a smart ledger. Available at SSRN 3945521. DOI: 10.2139/ssrn.3945521.
Kotsialou, G., Kuralbayeva, K., and Laing, T. (2022). Blockchain’s potential in forest offsets, the voluntary carbon markets and redd+. Environmental Conservation, 49(3):137–145. DOI: 10.1017/S0376892922000157.
Marke, A., Mehling, M., and de Andrade Correa, F. (2022). Governing carbon markets with distributed ledger technology. Cambridge University Press.
Moss.Earth (2020). Moss carbon credit mco2 token - whitepaper. Disponível em: [link].
Neves, R. F. D. (2025). Blockchain e mercado voluntário de carbono redd+ jurisdicional no sistema de incentivo a serviços ambientais do acre. Disponível em: [link].
Pervez, H., Muneeb, M., Irfan, M. U., and Haq, I. U. (2018). A comparative analysis of dag-based blockchain architectures. 12th International conference on open source systems and technologies (ICOSST), pages 27–34. DOI: 10.1109/ICOSST.2018.8632193.
Rashidibajgan, S. and Hupperich, T. (2024). Utilizing blockchains in opportunistic networks for integrity and confidentiality. Blockchain: Research and Applications, 5(1):100167. DOI: 10.1016/j.bcra.2023.100167.
Reinsberg, B. (2019). Blockchain technology and the governance of foreign aid. Journal of Institutional Economics, 15(3):413–429. DOI: 10.1017/S1744137418000462.
Rodrigues, C. K. S. (2021). Analyzing Blockchain integrated architectures for effective handling of IoT-ecosystem transactions. Computer Networks, 201:108610. DOI: 10.1016/j.comnet.2021.108610.
Rodrigues, C. K. S. (2024). Bases de dados distribuídas para aplicações computacionais: Estudo e seleção de tecnologias de registros distribuídos. iSys-Brazilian Journal of Information Systems, 17(1):12–1. DOI: 10.5753/isys.2024.4384.
Tchernykh, A., Schwiegelsohn, U., ghazali Talbi, E., and Babenko, M. (2019). Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability. Journal of Computational Science, 36:100581. DOI: 10.1016/j.jocs.2016.11.011.
Vilkov, A. and Tian, G. (2023). Blockchain’s scope and purpose in carbon markets: A systematic literature review. Sustainability, 15(11):8495. DOI: 10.3390/su15118495.
Vukolić, M. (2015). The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In International workshop on open problems in network security, pages 112–125. Springer. DOI: 10.1007/978-3-319-39028-4_9.
Werth, J., Berenjestanaki, M. H., Barzegar, H. R., El Ioini, N., and Pahl, C. (2023). A review of blockchain platforms based on the scalability, security and decentralization trilemma. ICEIS (1), pages 146–155. DOI: 10.5220/0011837200003467.
Xiao, Y., Zhang, N., Lou, W., and Hou, Y. T. (2020). A survey of distributed consensus protocols for blockchain networks. IEEE communications surveys & tutorials, 22(2):1432–1465. DOI: 10.1109/COMST.2020.2969706.
Yajam, H., Ebadi, E., and Akhaee, M. A. (2023). Jabs: a blockchain simulator for researching consensus algorithms. IEEE Transactions on Network Science and Engineering, 11(1):3–13. DOI: 10.1109/TNSE.2023.3282916.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
