A Smartphone-integrated Approach to Blood Pressure Estimation: Combining Video PPG and Pre-trained Convolutional Neural Networks

Authors

DOI:

https://doi.org/10.5753/reic.2025.5680

Keywords:

Photoplethysmography, Blood Pressure, Cardiovascular Monitoring, PPG Signal, Computer Vision, Deep Learning

Abstract

Non-invasive blood pressure estimation using photoplethysmography signals and artificial neural networks represents a promising advancement in cardiovascular health monitoring. The global prevalence of cardiovascular diseases and the demand for more accessible and practical cardiac health monitoring solutions drive this innovative approach. By leveraging smartphone camera technology to capture photoplethysmography signals, which are subsequently processed by neural network-based software, this method demonstrates significant potential. Results showed notable performance in estimating systolic blood pressure, achieving a mean absolute error of 5.65 ± 3.27 mmHg. Compared to related studies, the proposed method exhibited a lower error rate, surpassed only by a specific study by Yuriy Kurylyak, which reported a mean absolute error of 3.80 ± 3.46 mmHg for SBP estimation. However, the prediction of diastolic blood pressure showed a slightly higher error, with a mean absolute error of 7.51 ± 4.65 mmHg. The significance of this research lies in introducing a promising non-invasive approach to blood pressure estimation, potentially facilitating early detection and more efficient monitoring of cardiac conditions. Furthermore, the implementation of a blood pressure classification system and the potential expansion to mobile devices enhance user convenience and flexibility.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Achi, H. E., Belousova, T., Chen, L., Wahed, A., Wang, I., Hu, Z., Kanaan, Z., Rios, A., and Nguyen, A. N. D. (2019). Automated diagnosis of lymphoma with digital pathology images using deep learning. Annals of Clinical and Laboratory Science, 49(2):153–160. PMID: 31028058. Available in [link].

Berne, R. M., Levy, M. N., Koeppen, B. M., and Stanton, B. A. (2008). Berne & levy physiology. Elsevier Brasil. ISBN: 978-0323045827.

Bestbier, A. (2016). Monitoring core temperature, heart rate, respiratory rate and EEG of an infant through a wireless ear probe. PhD thesis, Stellenbosch University. DOI: 10.13140/RG.2.2.29709.95203.

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., and Nazeran, H. (2018). A review on wearable photoplethysmography sensors and their potential future applications in health care. International Journal of Biosensors & Bioelectronics, 4(4):195. DOI: 10.15406/ijbsbe.2018.04.00125.

dos Santos Cardoso, G., Gomes Lucas, M., and dos Santos Cardoso, S. (2021). Predição de pressão sanguínea através de sinais de fotopletismografia usando redes neurais MLP e LSTM. Revista Brasileira de Física Médica, 15:637. DOI: 10.29384/rbfm.2021.v15.19849001637.

Galloway, B. (2012). Biomedical Sensors and Instruments, [Book Reviews]. IEEE Pulse, 3(3):70–70. DOI: 10.1109/MPUL.2012.2189670.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23):e215–e220. DOI: 10.1161/01.CIR.101.23.e215.

Gonzalez, R. and Woods, R. (2017). Digital Image Processing Global Edition. Pearson Deutschland, 4th edition. ISBN: 978-1-292-22304-9.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. Available in [link].

Hsu, Y.-C., Li, Y.-H., Chang, C.-C., and Harfiya, L. N. (2020). Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only. Sensors, 20(19). DOI: 10.3390/s20195668.

Ibtehaz, N., Mahmud, S., Chowdhury, M. E., Khandakar, A., Salman Khan, M., Ayari, M. A., Tahir, A. M., and Rahman, M. S. (2022). Ppg2abp: Translating photoplethysmogram (ppg) signals to arterial blood pressure (abp) waveforms. Bioengineering, 9(11):692. DOI: 10.3390/bioengineering9110692.

Ibtehaz, N. and Rahman, M. S. (2020a). MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121:74–87. DOI: 10.1016/j.neunet.2019.08.025.

Ibtehaz, N. and Rahman, M. S. (2020b). Ppg2abp: Translating photoplethysmogram (ppg) signals to arterial blood pressure (abp) waveforms using fully convolutional neural networks. arXiv preprint arXiv:2005.01669. DOI: 10.48550/arXiv.2005.01669.

Introcaso, L. (1998). Aspectos históricos da hipertensão: História da medida da pressão arterial. HiperAtivo, 5(2):79–82. Available in [link].

Junqueira, L. F. (2006). Considerações básicas sobre a organização estrutural e a fisiologia do aparelho cardiovascular. Laboratório Cardiovascular da Universidade de Brasília, 10(01). DOI: 10.13140/RG.2.1.1503.7605.

Kalkhaire, S. D. and Puranik, V. G. (2016). Remote detection of photoplethysmographic signal and SVM based classification. In 2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT), pages 128–132. DOI: 10.1109/ICAECCT.2016.7942568.

Kohlmann, N. E. B. and Kohlmann Jr, O. (2011). Histórico e perspectivas da medida da pressão arterial. Revista Hipertensão, 14(2):5–13. ISSN: 1809-4260.

Kurylyak, Y., Lamonaca, F., and Grimaldi, D. (2013). A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 280–283. IEEE. DOI: 10.1109/I2MTC.2013.6555424.

Leal, J. F. U. (2019). Desenvolvimento de um Protótipo de Monitoramento de Pressão Arterial Sistêmica Baseado em Fotopletismografia. Dissertação (Mestrado em Engenharia Elétrica), Universidade Federal do Espírito Santo, Vitória. Available in [link].

Mahmud, S., Ibtehaz, N., Khandakar, A., Tahir, A. M., Rahman, T., Islam, K. R., Hossain, M. S., Rahman, M. S., Musharavati, F., Ayari, M. A., et al. (2022). A shallow U-Net architecture for reliably predicting blood pressure (BP) from photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Sensors, 22(3):919. DOI: 10.3390/s22030919.

Martins, R. M. S. (2010). Desenvolvimento de um sensor de fotopletismografia para monitorização cardíaca para aplicação no pulso. Dissertação (Mestrado) em Engenharia Biomédica, Universidade de Coimbra (Portugal). Available in [link].

Moreira, F. G. (2018). Estudo sobre a estimativa da pressão arterial utilizando dados de fotopletismografia da base MIMIC e uma rede neural artificial. Trabalho de Conclusão de Curso (Graduação), Universidade Tecnológica Federal do Paraná. Available in [link].

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer. DOI: 10.1007/978-3-319-24574-4_28.

Sousa, A. L. L., Jardim, P. C. B. V., Mendonça, B. C., Jardim, T. d. S. V., Barroso, W. K., Rodrigues, R. B., and Carneiro, S. B. (2011). Medida casual da pressão arterial: vantagens e desvantagens no diagnóstico e tratamento da hipertensão arterial. Revista Hipertensão, 14(2):45–50. ISSN: 1809-4260.

Suárez, L. (2003). Tecnico Auxiliar de Geriatria. Manual. Temario. E-book. MAD-Eduforma. ISBN: 9788466530323.

Tamura, T., Maeda, Y., Sekine, M., and Yoshida, M. (2014). Wearable Photoplethysmographic Sensors—Past and Present. Electronics, 3. DOI: 10.3390/electronics3020282.

Tervaert, T. W. C., Mooyaart, A. L., Amann, K., Cohen, A. H., Cook, H. T., Drachenberg, C. B., Ferrario, F., Fogo, A. B., Haas, M., de Heer, E., et al. (2010). Pathologic classification of diabetic nephropathy. Journal of the American Society of Nephrology, 21(4):556–563. DOI: 10.1681/ASN.2010010010.

Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., and Freeman, W. (2012). Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph., 31(4). DOI: 10.1145/2185520.2185561.

Xing, X. and Sun, M. (2016). Optical blood pressure estimation with photoplethysmography and fft-based neural networks. Biomedical Optics Express, 7(8):3007–3020. DOI: 10.1364/BOE.7.003007.

Zhou, B., Carrillo-Larco, R. M., Danaei, G., Riley, L. M., Paciorek, C. J., Stevens, G. A., Gregg, E. W., Bennett, J. E., Solomon, B., Singleton, R. K., et al. (2021). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet, 398(10304):957–980. DOI: 10.1016/S0140-6736(21)01330-1.

Descargas

Published

2025-06-08

Cómo citar

Alves, G. dos S. M., & Góes, C. E. (2025). A Smartphone-integrated Approach to Blood Pressure Estimation: Combining Video PPG and Pre-trained Convolutional Neural Networks. Revista Electrónica De Iniciación Científica En Computación, 23(1), 69–80. https://doi.org/10.5753/reic.2025.5680

Issue

Section

Artículos