Paralelizacão e Otimizações do Algoritmo de Indexação de Dados Multimídia baseado em Quantização
DOI:
https://doi.org/10.5753/reic.2019.1707Abstract
Nesse artigo é apresentada uma paralelização eficiente do algoritmo de busca por similaridade Product Quantization Approximate Nearest Neighbor Search (PQANNS). Esse método pode responder consultas com uma demanda reduzida de memória e, juntamente com a paralelização proposta, pode lidar de forma eficiente com grandes bases de dados. A execução utilizando 128 nós/3584 núcleos de CPU foi capaz de atingir uma eficiência do paralelismo de 0.97 em uma base de dados contendo 256 bilhões de descritores SIFT.Downloads
Não há dados estatísticos.
Downloads
Published
2019-12-31
Como Citar
Fernandes, A., & Teodoro, G. (2019). Paralelizacão e Otimizações do Algoritmo de Indexação de Dados Multimídia baseado em Quantização. Revista Eletrônica De Iniciação Científica Em Computação, 17(5). https://doi.org/10.5753/reic.2019.1707
Issue
Section
Edição Especial: WIC/WSCAD