Artificial Intelligence in Electronic Government in Smart Cities: Possibilities and Challenges
DOI:
https://doi.org/10.5753/compbr.2020.43.1793Keywords:
Electronic Government, Smart Cities, Artificial IntelligenceAbstract
The concept of Smart Cities has attracted the attention of government officials, the private sector, research institutes and people in general for having as a principle the use of technology to improve services to citizens. Information and Communication Technologies (ICTs) have attracted attention because they offer a range of solutions involving Internet of Things (IoT), Big Data and Artificial Intelligence (AI) technologies. Thus, a city must develop e-government so that ICTs are used to improve services, encourage citizen participation and support decision making. For this, ICTs must be part of the strategic planning of a city, aiming at building integrated, intelligent and secure solutions.
Downloads
References
BARCELLOS, R.; BERNARDINI, F.; VITERBO, J. A Methodology for Retrieving Datasets from Open Government Data Portals Using Information Retrieval and Question and Answering Techniques. In: Proc. 19th IFIP Int. Conf. EGOV - LNCS 12219.
BERNARDINI, F.; NUNES, V.; CAPPELLI, C.; REIS, L.C.D.; SILVA, J.L.C.; BASTOS, C.A.M. A Importância das Tecnologias da Informação e Comunicação para a Gestão e Operação das Cidades Inteligentes. Cap 14. In: GUEDES, A.L.A.; SOARES, C.A.P.; RODRIGUEZ Y RODRIGUEZ, M.V. (orgs) Smart Cities - Cidades Inteligentes nas Dimensões: Planejamento, Governança, Mobilidade, Educação e Saúde. 2020.
DONEDA, D.C.M.; MENDES, L.S.; SOUZA, C.A.P.; ANDRADE, N.N.G. Considerações iniciais sobre inteligência artificial, ética e autonomia pessoal. Pensar, Fortaleza, v. 23, n. 4, p. 1-17, 2018.
ESCOLA POLITÉCNICA DA USP. Estudante da Poli usa IA em sistema que melhora previsão de chegada de ônibus coletivo em São Paulo. Disponível em [link]. 2017.
JORNAL DA USP. E-Noé. A tecnologia que alerta sobre o risco de enchentes. Disponível em: [link]. 2019.
SANTOS, J.S.; PAES, A.; BERNARDINI, F. Combining Out of Domain Datasets Based on Similarity to Predict Election Outcomes. In: Proc. Brazilian Conference on Intelligent Systems (BRACIS). 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Brazil Computing
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.