Publications About COVID-19: A Semantic Analysis On Retracted Articles

Authors

  • Hugo Duca Universidade Federal do Rio de Janeiro (UFRJ)
  • Ingrid Pacheco Universidade Federal do Rio de Janeiro (UFRJ)
  • Giseli Rabello Lopes Universidade Federal do Rio de Janeiro (UFRJ)
  • Maria Luiza M. Campos Universidade Federal do Rio de Janeiro (UFRJ)
  • Jonice Oliveira Universidade Federal do Rio de Janeiro (UFRJ)

DOI:

https://doi.org/10.5753/isys.2022.2413

Keywords:

COVID-19, Retracted Articles, Social Network Analysis, Semantic Web, Linked Data, Ontologies

Abstract

In a hurry for new discoveries to fight the COVID-19 pandemic, several retracted articles began to appear and be cited as references for other studies. In the present work, social network analysis techniques and linked data were used to assess the influence of retracted articles on those that referred to them. As a result, it was found that the most referred retracted work had 2,745 citations, 7 retracted works refer to others in the same situation, and 82.11% of the references were made after the retraction. In addition, the most used words in the titles were associated with possible treatments for the disease and the countries which had the most referred retracted articles are France and Vietnam.

Downloads

Download data is not yet available.

References

Baeza-Yates, R. e Ribeiro-Neto, B. (2013). Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. 2nd edition. Bookman.

Bar-Ilan, J. e Halevi, G. (2017). Post retraction citations in context: a case study. Sciento-metrics, 113:547–565.

Berners-Lee, T. (2006). Linked data. Disponível em: link. Acesso em: 13 de nov. 2021.

Boschieroa, M. N., Carvalho, T. A., e de Lima Marson, F. A. (2021). Retraction in the era of covid-19 and its influence on evidence-based medicine: is science in jeopardy?Pulmonology Journal, 27:97–106.

Browman, H., Alexander, J., Fennell, C., Hodgkinson, M., e Tierney, H. (2019). Guidelines for retracting articles. Technical report, Committee on Publication Ethics.

Cherven, K. (2015). Mastering Gephi network visualization : produce advanced network graphs in Gephi and gain valuable insights into your network datasets. Community experience distilled. Packt Publishing.

Cortegiani, A., Catalisano, G., Ippolito, M., Giarratano, A., Absalom, A. R., e Einav, S. (2021). Retracted papers on sars-cov-2 and covid-19. British journal of anaesthesia, 126:e155–e156.

d’Aquin, M., Aquin, Kronberger, G., e Suárez-Figueroa, M. C. (2012). Combining data mining and ontology engineering to enrich ontologies and linked data. CEUR Workshop Proceedings, 868.

Duca, H., Pacheco, I., Lopes, G., Campos, M. L., e Oliveira, J. (2021). Artigos retratados sobre covid-19: Uma análise sobre sua rede de citações. In Anais do X Brazilian Workshop on Social Network Analysis and Mining, pages 13–24, Porto Alegre, RS, Brasil. SBC.

Else, H. (2020). How a torrent of covid science changed research publishing - in seven charts. Nature, 588:553.

Fruchterman, T. M. J. e Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11):1129–1164.

Hatala, J.-P. (2006). Social network analysis in human resource development: A new methodology. Human Resource Development Review, 5(1):45–71.

Jesus, A. F. d. e Castro, F. F. d. (2019). Dados bibliográficos para o linked data: uma revisão sistemática de literatura. Brazilian Journal of Information Science: research trends, 13(1):45–55.

Peroni, S. e Shotton, D. (2012). Fabio and cito: Ontologies for describing bibliographic resources and citations. Journal of Web Semantics, 17:33–43.

Piller, C. (2021). Disgraced covid-19 studies are still routinely cited. Science, 371:331–332.

Rautenberg, S. e. a. (2017). Dados abertos conectados e gestão do conhecimento: estudos de caso cientométricos em uma universidade brasileira. Perspectivas em Ciência da Informação, 22:116–142.

Ribeiro, E. M. B. d. A. e Bastos, A. A. V. A.-l. B. (2011). Redes sociais interorganizacionais na efetivação de projetos sociais. Psicologia & Sociedade, 23:282 – 292.

Sheth, B. P. e Thaker, V. S. (2014). Scientific retraction: a synonym for pseudoscience? Acta bioethica, 20.

Shotton, D. (2010). CiTO, the citation typing ontology. Springer Science and Business Media LLC, 1(Suppl 1):S6.

Silva, J. A. T. D. e Bornemann-Cimenti, H. (2017). Why do some retracted papers continue to be cited? Scientometrics, 110:365–370.

Soltani, P. e Patini, R. (2020). Retracted covid-19 articles: a side-effect of the hot race to publication. Scientometrics, 125.

Staab, S. e Studer, R., editors (2009). Handbook on Ontologies. Springer Berlin Heidel-berg.

Swartout, B., Patil, R., Knight, K., e Russ, T. (1997). Toward Distributed Use of Large-Scale Ontologies. In Ontological Engineering, AAAI-97 Spring Symposium Series, pages 138–148.

Wasserman, S. e Faust, K. (1994). Social network analysis: Methods and applications, volume 8. Cambridge university press.

Zdravkovic, M., Berger-Estilita, J., Zdravkovic, B., e Berger, D. (2020). Scientific quality of covid-19 and sars cov-2 publications in the highest impact medical journals during the early phase of the pandemic: A case control study. PLoS One, 15.

Published

2022-10-18

How to Cite

Duca, H., Pacheco, I., Lopes, G. R., Campos, M. L. M., & Oliveira, J. (2022). Publications About COVID-19: A Semantic Analysis On Retracted Articles. ISys - Brazilian Journal of Information Systems, 15(1), 22:1–22:25. https://doi.org/10.5753/isys.2022.2413

Issue

Section

Extended versions of selected articles