Uma Avaliação de Desempenho de Soluções Off-chain baseadas em Sistemas de Armazenamento Distribuído
DOI:
https://doi.org/10.5753/isys.2021.808Abstract
Estratégias off-chain baseadas em sistemas de armazenamento distribuídos têm sido adotadas para contornar o desafio da escalabilidade de armazenamento em blockchain. Apesar da relevância acadêmica e mercadológica, identifica-se uma lacuna quanto a realização de análises empíricas comparando o desempenho dos sistemas com mais visibilidade nesse contexto, isto é, o IPFS, Sia e Swarm. Diante dessa oportunidade, este trabalho realizou, de forma pioneira, uma avaliação experimental visando contribuir para a agregação de informações que apoiem a tomada de decisão sobre tais soluções off-chain. Concluiu-se que cada sistema avaliado destacou-se de diferentes formas dependendo das particularidades do projeto e das métricas avaliadas.
Downloads
Referências
Aitzhan, N. Z. and Svetinovic, D. (2018). Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing, 15(5):840–852.
Antonopoulos, A. M. and Wood, G. (2018). Mastering ethereum: building smart contracts and dapps. O’Reilly Media.
Beck, R., Avital, M., Rossi, M., and Thatcher, J. B. Blockchain technology in business and information systems research. Bus Inf Syst Eng.
Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561.
Benisi, N. Z., Aminian, M., and Javadi, B. (2020). Blockchain-based decentralized storage networks: A survey. Journal of Network and Computer Applications, page 102656.
BitInforCharts (2019). Ethereum (eth) price stats and information. Disponível em: https://bitinfocharts.com/ethereum/. Acesso em: 27 set. 2019.
Cachin, C. and Vukolic, M. (2017). Blockchain consensus protocols in the wild. arXiv preprint arXiv:1707.01873.
Casino, F., Politou, E., Alepis, E., and Patsakis, C. (2019). Immutability and decentralized storage: An analysis of emerging threats. IEEE Access, 8:4737–4744.
Chinchilla, C. (2014). Ethereum: A next-generation smart contract and decentralized application platform. Dispon´ıvel em: https://github.com/ethereum/wiki/wiki/White-Paper. Acesso em: 27 jun. 2020.
da Silva Rodrigues, C. K. (2017). Sistema bitcoin: uma analise da seguranc¸a das transaçõa. iSys-Brazilian Journal of Information Systems, 10(3):5–23.
Eberhardt, J. and Tai, S. (2017). On or off the blockchain? insights on off-chaining computation and data. In European Conference on Service-Oriented and Cloud Computing, pages 3–15. Springer.
Ethereum (2020). Eth 2.0. Dispon´ıvel em: https://www.ethereum.org/learn/#eth-2-0. Acesso em: 27 jun. 2020.
Etherscan (2019). Ethereum gas limit history. Dispon´ıvel em: https://etherscan.io/chart/gaslimit. Acesso em: 27 set. 2019.
Etherscan (2020). Ethereum unique address growth rate. Dispon´ıvel em: https://etherscan.io/chart/address. Acesso em: 27 jun. 2020.
Group, T. B. (2019). One click blockchain. Dispon´ıvel em: https://www.trufflesuite.com/ganache. Acesso em: 27 jun. 2020.
Hartman, J. H., Murdock, I., and Spalink, T. (1999). The swarm scalable storage system. In Proceedings. 19th IEEE International Conference on Distributed Computing Systems (Cat. No. 99CB37003), pages 74–81. IEEE.
Holgate, R., Furlonger, D., and Howard, R. (2017). Toolkit: Government use cases for blockchain. gartner. International Journal of Community Currency Research.
Jiang, S., Cao, J., Wu, H., Yang, Y., Ma, M., and He, J. (2018). Blochie: a blockchainbased platform for healthcare information exchange. In 2018 ieee international conference on smart computing (smartcomp), pages 49–56. IEEE.
Jimenez-Peris, R., Pati ´ no-Mart ˜ ´ınez, M., Kemme, B., and Alonso, G. (2002). Improving the scalability of fault-tolerant database clusters. In Proceedings 22nd International Conference on Distributed Computing Systems, pages 477–484. IEEE.
Lakhani, K. and Iansiti, M. (2017). The truth about blockchain. Harvard Business Review, 95(1):119–127.
Laurence, T. (2019). Blockchain for dummies. John Wiley & Sons.
Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system.
Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, New Jersey.
Pop, C., Antal, M., Cioara, T., Anghel, I., Sera, D., Salomie, I., Raveduto, G., Ziu, D., Croce, V., and Bertoncini, M. (2019). Blockchain-based scalable and tamper-evident solution for registering energy data. Sensors, 19(14):3033.
Project, B. (2020). Running a full node. Dispon´ıvel em: https://bitcoin.org/en/full-node. Acesso em: 27 jun. 2020.
Raval, S. (2016). Decentralized applications: harnessing Bitcoin’s blockchain technology. O’Reilly Media, Inc.
Rodrigues, D., Cunha, A., Meirelles, F., and Diniz, E. (2018). Benefits of blockchain for digital social currency.
Shukla, P. A. and Samet, S. (2020). Systematization of knowledge on scalability aspect of blockchain systems. In Future of Information and Communication Conference, pages 130–138. Springer.
Szabo, N. (1996). Smart contracts: building blocks for digital markets. EXTROPY: The Journal of Transhumanist Thought,(16), 18(2).
Szilagyi, P. (2019). Geth v1.9.0. Dispon ´ ´ıvel em: https://blog.ethereum.org/2019/07/10/geth-v1-9-0/. Acesso em: 27 jun. 2020.
Tapscott, D. and Tapscott, A. (2016). The impact of the blockchain goes beyond financial services. Harvard Business Review, 10(7).
Vorick, D. and Champine, L. (2014). Sia: Simple decentralized storage. Nebulous Inc.
Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., and Liu, Y. (2019). A survey on the scalability of blockchain systems. IEEE Network, 33(5):166–173.
Yaga, D., Mell, P., Roby, N., and Scarfone, K. (2019). Blockchain technology overview. arXiv preprint arXiv:1906.11078.
Downloads
Published
Como Citar
Issue
Section
Licença
Copyright (c) 2021 The authors
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.