UnnMindFlex: A prototype mobile application and case study on HRV-guided cognitive enhancement
DOI:
https://doi.org/10.5753/jis.2025.5574Keywords:
Cognitive Growth, Mobile Application, Prototype, Aerobic Exercise, Heart Rate Variability, Working MemoryAbstract
In today’s demanding world, cognitive fitness plays a vital role in academic success and overall well-being, particularly for students facing academic challenges. Essential cognitive abilities such as memory, attention, and problem-solving are crucial for personal and academic development. This paper introduces innovative research on the creation of a prototype mobile application designed to foster individualized cognitive enhancement through aerobic exercise. The UnnMindFlex prototype integrates principles from exercise science, cognitive psychology, and technology to provide personalized interventions. The application features customized exercise programs, real-time heart rate variability (HRV) monitoring, and cognitive assessment tools. By leveraging the cognitive benefits of aerobic exercise, UnnMindFlex aims to enhance cognitive performance and support neuroplasticity. This study outlines the theoretical framework, design principles, and implementation strategies underlying the development of UnnMindFlex. Additionally, it presents preliminary findings from a case study evaluating the application’s effectiveness in improving working memory performance. The results highlight significant associations between HRV metrics and cognitive improvements post-aerobic exercise, further validating the potential of UnnMindFlex as a tool for cognitive enhancement. This research provides an initial step toward creating scalable and accessible solutions for cognitive development, especially in high-demand academic environments.
Downloads
References
Ahn, J. and Kim, M. (2023). Effects of aerobic exercise on global cognitive function and sleep in older adults with mild cognitive impairment: A systematic review and meta-analysis. Geriatric Nursing, 51:9–16. DOI: https://doi.org/10.1016/j.gerinurse.2023.02.008.
Angosto, S., Garcia-Fernández, J., and Grimaldi-Puyana, M. (2023). A systematic review of intention to use fitness apps (2020–2023). Humanities and Social Sciences Communications, 10. DOI: https://doi.org/10.1057/s41599-023-02011-3.
Anguera, J., Boccanfuso, J., Rintoul, J., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C., Johnston, E., and Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501:97–101. DOI: https://doi.org/10.1038/nature12486.
Babei, P. and Azari, H. B. (2021). Exercise training improves memory performance in older adults: a narrative review of evidence and possible mechanisms. Frontiers in Human Neuroscience, 15. DOI: https://doi.org/10.3389/fnhum.2021.771553.
Bang, M., Jang, C. W., Kim, H. S., Park, J. H., and Cho, H. E. (2023). Mobile applications for cognitive training: Content analysis and quality review. Internet Interventions, 33. DOI: https://doi.org/10.1016/j.invent.2023.100632.
Boere, K., Lloyd, K., Binsted, G., and Krigolson, O. E. (2023). Exercising is good for the brain but exercising outside is potentially better. Scientific Reports, 13. DOI: https://doi.org/10.1038/s41598-022-26093-2.
Bonnechère, B., Klass, M., and Sahakian, B. J. (2021). Brain training using cognitive apps can improve cognitive performance and processing speed in older adults. Scientific Reports, 11. DOI: https://doi.org/10.1038/s41598-021-91867-z.
Borresen, J. and Lambert, M. I. (2008). Autonomic control of heart rate during and after exercise. Sports Medicine, 38:633–646. DOI: https://doi.org/10.2165/00007256-200838080-00002.
Chang, Y.-K., Labban, J., Gapin, J., and Ethier, J. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453:87–101. DOI: https://doi.org/10.1016/j.brainres.2012.02.068.
Ferrer-Uris, B., Ramos, M. A., Busquets, A., and Angulo-Barroso, R. (2022). Can exercise shape your brain? a review of aerobic exercise effects on cognitive function and neuro-physiological underpinning mechanisms. AIMS Neuroscience, 9:150–174. DOI: https://doi.org/10.3934/Neuroscience.2022009.
Gordon, M., Althoff, T., and Leskovec, J. (2019). Goal-setting and achievement in activity tracking apps: A case study of myfitnesspal. In The World Wide Web Conference, WWW '19, page 571–582, New York, NY, USA. Association for Computing Machinery. DOI: https://doi.org/10.1145/3308558.3313432.
Hötting, K. and Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9):2243–2257. DOI: https://doi.org/10.1016/j.neubiorev.2013.04.005.
Hu, J., He, W., Zhang, J., and Song, J. (2023). Examining the impacts of fitness app features on user well-being. Information Management, 60(5):103796. DOI: https://doi.org/10.1016/j.im.2023.103796.
Kimura, T., Mizumoto, T., Torii, Y., Ohno, M., Higashino, T., and Yagi, Y. (2023). Comparison of the effects of indoor and outdoor exercise on creativity: an analysis of eeg alpha power. Frontiers in Psychology, 14. DOI: https://doi.org/10.3389/fpsyg.2023.1161533.
Li, Y., Yang, N., Zhang, Y., Xu, W., and Cai, L. (2021). The relationship among trait mindfulness, attention, and working memory in junior school students under different stressful situations. Frontiers in Psychology, 12. DOI: https://doi.org/10.3389/fpsyg.2021.558690.
Liu, R., Menhas, R., Dai, J., Saqib, Z. A., and Peng, X. (2022). Fitness apps, live streaming workout classes, and virtual reality fitness for physical activity during the covid-19 lockdown: An empirical study. Frontiers in Public Health, 10. DOI: https://doi.org/10.3389/fpubh.2022.852311.
Lu, Y., Bu, F.-Q., Wang, F., Liu, L., Zhang, S., Wang, G., and Hu, X.-Y. (2023). Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Translational Neurodegeneration, 12. DOI: https://doi.org/10.1186/s40035-023-00341-5.
Lumsden, J., Edwards, E. A., Lawrence, N. S., Coyle, D., and Munafò, M. R. (2016a). Gamification of cognitive assessment and cognitive training: A systematic review of applications and efficacy. JMIR Serious Games, 4(2). DOI: https://doi.org/10.2196/games.5888.
Lumsden, J., Skinner, A., Woods, A. T., Lawrence, N. S., and Munafò, M. (2016b). The effects of game-like features and test location on cognitive test performance and participant enjoyment. PeerJ, 4. DOI: https://doi.org/10.7717/peerj.2184.
Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., and Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Frontiers in Psychology, 9. DOI: https://doi.org/10.3389/fpsyg.2018.00509.
McIlvain, G., Magoon, E. M., Clements, R. G., Merritt, A., Hiscox, L. V., Schwarb, H., and Johnson, C. L. (2024). Acute effects of high-intensity exercise on brain mechanical properties and cognitive function. Brain Imaging and Behavior, 18:863–874. DOI: https://doi.org/10.1007/s11682-024-00873-y.
Michael, S., Graham, K. S., and Davis, G. M. (2017). Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals - a review. Frontiers in Physiology, 8. DOI: https://doi.org/10.3389/fphys.2017.00301.
Olawuwo, S., Viakhireva, V., Chalachew, K., and Demareva, V. (2026). Unnmindflex: Harnessing aerobic exercise for personalized cognitive growth. In Internet and Modern Society. Human-Computer Communication. Communications in Computer and Information Science, volume 2534, pages 195–203. Springer Nature. DOI: https://doi.org/10.1007/978-3-031-96177-9_16.
Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., Howard, R. J., and Ballard, C. G. (2010). Putting brain training to the test. Nature, 465:775–778. DOI: https://doi.org/10.1038/nature09042.
Quan, Y., Lo, C. Y., Olsen, K. N., and Thompson, W. F. (2024). The effectiveness of aerobic exercise and dance interventions on cognitive function in adults with mild cognitive impairment: an overview of meta-analyses. International Review of Sport and Exercise Psychology, pages 1–22. DOI: https://doi.org/10.1080/1750984X.2024.2332989.
Simons, D. J., Boot, W. R., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., and Stine-Morrow, E. A. L. (2016). Do "brain-training" programs work? Psychological science in the public interest, 17(3). DOI: https://doi.org/10.1177/1529100616661983.
Stanley, J., Peake, J. M., and Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Medicine, 43(12):1259–1277. DOI: https://doi.org/10.1007/s40279-013-0083-4.
Stillman, C. M., Cohen, J., Lehman, M. E., and Erickson, K. I. (2016). Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Frontiers in Human Neuroscience, 10. DOI: https://doi.org/10.3389/fnhum.2016.00626.
Sudo, M., Costello, J. T., McMorris, T., and Ando, S. (2022). The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Frontiers in Behavioral Neuroscience, 16. DOI: https://doi.org/10.3389/fnbeh.2022.957677.
Takehara, K., Togoobaatar, G., Kikuchi, A., Lkhagvasuren, G., Lkhagvasuren, A., Aoki, A., Fukuie, T., Shagdar, B.-E., Suwabe, K., Mikami, M., Mori, R., and Soya, H. (2021). Exercise intervention for academic achievement among children: A randomized controlled trial. Pediatrics, 148. DOI: https://doi.org/10.1542/peds.2021-052808.
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5):1043–1065. DOI: https://doi.org/10.1161/01.CIR.93.5.1043.
Thayer, J. F., Hansen, A. L., Saus-Rose, E., and Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2):141–153. DOI: https://doi.org/10.1007/s12160-009-9101-z.
Voss, M. W., Vivar, C., Kramer, A. F., and van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17. DOI: https://doi.org/10.1016/j.tics.2013.08.001.
Welsh, M. R., Mosley, E., Laborde, S., Day, M. C., Sharpe, B. T., Burkill, R. A., and Birch, P. D. (2023). The use of heart rate variability in esports: A systematic review. Psychology of Sport and Exercise, 69. DOI: https://doi.org/10.1016/j.psychsport.2023.102495.
Yang, Y. and Koenigstorfer, J. (2021). Determinants of fitness app usage and moderating impacts of education-, motivation-, and gamification-related app features on physical activity intentions: Cross-sectional survey study. J Med Internet Res, 23(7):e26063. DOI: https://doi.org/10.2196/26063.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Samuel Olawuwo, Valeriia Viakhireva, Andrey Demarev, Chalachew Kassaw, Nikolay Nazarov, Valeriia Demareva

This work is licensed under a Creative Commons Attribution 4.0 International License.
JIS is free of charge for authors and readers, and all papers published by JIS follow the Creative Commons Attribution 4.0 International (CC BY 4.0) license.


