The MEG21 Unified Model for Modern Electronic Games of the 21st Century based on Electroencephalography-controlled Brain-Computer Interface
DOI:
https://doi.org/10.5753/jis.2026.6337Keywords:
BCI, EEG, Game, Model, HCI, Physiological ComputingAbstract
The rapid advancement of Brain-Computer Interface (BCI) technology has facilitated its employment in non-clinical contexts, including games. Electroencephalography (EEG)-controlled games merge the benefits of both fields, as they can be employed in both serious and entertainment contexts due to their ludic and engaging nature, in addition to being accessible to people with physical disabilities. Despite these benefits and the overlapping of different fields, there is still a lack of representational schemes for these games, as current theoretical models can only represent BCI systems and games separately. This work introduces a unified model for games that use EEG-based BCI controls, assisting researchers in effectively developing and analyzing such games by providing a framework for instantiating their abstract, structural and functional components. Its utility and representativeness were evaluated using a selection of EEG-controlled games from existing literature, which demonstrated the model’s effectiveness in classifying and detailing these games. Recurring attributes and descriptive values were also identified and organized based on the sample studies, showing how the components of the model could represent the functioning and structure of EEG-based games.
Downloads
References
Abdessalem, H. B. and Frasson, C. (2017). Real-time Brain Assessment for Adaptive Virtual Reality Game : A Neurofeedback Approach. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10512 LNAI, pages 133–143. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-67615-9_12.
AbuRas, R., Turcu, G., Kosunen, I., and Mihaescu, M. C. (2018). Peak alpha based neurofeedback training within survival shooter game. In Intelligent Data Engineering and Automated Learning – IDEAL 2018, pages 821–828. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-03493-1_85.
Ahn, M., Lee, M., Choi, J., and Jun, S. C. (2014). A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors, 14(8):14601–14633. DOI: https://doi.org/10.3390/s140814601.
Alchalabi, A. E., Shirmohammadi, S., Eddin, A. N., and Elsharnouby, M. (2018). FOCUS: Detecting ADHD Patients by an EEG-Based Serious Game. IEEE Transactions on Instrumentation and Measurement, 67(7):1512–1520. DOI: https://doi.org/10.1109/TIM.2018.2838158.
Ali, A. and Puthusserypady, S. (2015). A 3d learning playground for potential attention training in ADHD: A brain computer interface approach. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. DOI: https://doi.org/10.1109/embc.2015.7318302.
Amini, M. M. and Shalchyan, V. (2023). Designing a motion-onset visual evoked potential-based brain-computer interface to control a computer game. IEEE Transactions on Games, pages 1–10. DOI: https://doi.org/10.1109/tg.2023.3279289.
An, H.-S., Kim, J.-W., and Lee, S.-W. (2016). Design of an asynchronous brain-computer interface for control of a virtual avatar. In 2016 4th International Winter Conference on Brain-Computer Interface (BCI). IEEE. DOI: https://doi.org/10.1109/iww-bci.2016.7457463.
Antle, A. N., Chesick, L., and Mclaren, E.-S. (2018a). Opening up the Design Space of Neurofeedback Brain–Computer Interfaces for Children. ACM Transactions on Computer-Human Interaction, 24(6):1–33. DOI: https://doi.org/10.1145/3131607.
Antle, A. N., Chesick, L., Sridharan, S. K., and Cramer, E. (2018b). East meets west: a mobile brain-computer system that helps children living in poverty learn to self-regulate. Personal and Ubiquitous Computing, 22(4):839–866. DOI: https://doi.org/10.1007/s00779-018-1166-x.
Arrambide, K., Cormier, L. F., Wehbe, R. R., Nacke, L. E., Gabele, M., Wagner, S., and Hansen, C. (2019). The development of "orbit". In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts. ACM. DOI: https://doi.org/10.1145/3341215.3356301.
Beveridge, R., Wilson, S., and Coyle, D. (2016a). 3d graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming. In Progress in Brain Research, pages 329–353. Elsevier. DOI: https://doi.org/10.1016/bs.pbr.2016.06.006.
Beveridge, R., Wilson, S., and Coyle, D. (2016b). Can teenagers control a 3d racing game using motion-onset visual evoked potentials? Brain-Computer Interfaces, 4(1-2):102–113. DOI: https://doi.org/10.1080/2326263x.2016.1266725.
Blandón, D. Z., Muñoz, J. E., Lopez, D. S., and Gallo, O. H. (2016). Influence of a BCI neurofeedback videogame in children with ADHD. quantifying the brain activity through an EEG signal processing dedicated toolbox. In Proceedings of the 11th Colombian Computing Conference (CCC), pages 1—-8. IEEE. DOI: https://doi.org/10.1109/ColumbianCC.2016.7750788.
Bonnet, L., Lotte, F., and Lecuyer, A. (2013). Two brains, one game: Design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Transactions on Computational Intelligence and AI in Games, 5(2):185–198. DOI: https://doi.org/10.1109/tciaig.2012.2237173.
Bos, D. P., Reuderink, B., Laar, B., Gürkök, H., Mühl, C., Poel, M., Nijholt, A., and Heylen, D. (2010). Brain-computer interfacing and games, chapter Design, User Experience, and Usability. User Experience Design Practice, pages 149–178. Human-Computer Interaction Series. Springer, London. DOI: https://doi.org/10.1007/978-1-84996-272-8_10.
Botacim, R. S., França, I. P. L., Nunes, R. B., and Müller, S. M. T. (2021). Incremental eeg analysis using goertzel transform for ssvep-based hmi. In Procedings do XV Simpósio Brasileiro de Automação Inteligente, SBAI2021. SBA Sociedade Brasileira de Automática. DOI: https://doi.org/10.20906/sbai.v1i1.2615.
Burwell, S., Sample, M., and Racine, E. (2017). Ethical aspects of brain computer interfaces: a scoping review. BMC Medical Ethics, 18(1). DOI: https://doi.org/10.1186/s12910-017-0220-y.
Chen, C.-L., Tang, Y.-W., Zhang, N.-Q., and Shin, J. (2017a). Neurofeedback based attention training for children with ADHD. In 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST). IEEE. DOI: https://doi.org/10.1109/icawst.2017.8256530.
Chen, J., Zhang, D., Engel, A. K., Gong, Q., and Maye, A. (2017b). Application of a single-flicker online SSVEP BCI for spatial navigation. PLOS ONE, 12(5):e0178385. DOI: https://doi.org/10.1371/journal.pone.0178385.
Choi, I., Rhiu, I., Lee, Y., Yun, M. H., and Nam, C. S. (2017). A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLOS ONE, 12(4):1–35. DOI: https://doi.org/10.1371/journal.pone.0176674.
Coogan, C. G. and He, B. (2018). Brain-computer interface control in a virtual reality environment and applications for the internet of things. IEEE Access, 6:10840–10849. DOI: https://doi.org/10.1109/access.2018.2809453.
Costa, N. M. G. B., Marçal, E., Azevedo, R. B., Santos, B. L. S. d., and Carvalho, M. M. (2025). Evaluating cognitive aspects of adhd students using brain-computer interface and a digital game: A study in brazil. International Journal of Emerging Technologies in Learning (iJET), 20(01):23–32. DOI: https://doi.org/10.3991/ijet.v20i01.51403.
Cruz, I., Moreira, C., Poel, M., Ferreira, H., and Nijholt, A. (2018). Kessel Run - A Cooperative Multiplayer SSVEP BCI Game. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, volume 215, pages 77–95. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-73062-2_6.
Djaouti, D., Alvarez, J., and Jessel, J.-P. (2011). Classifying serious games: the G/P/S model. Handbook of Research on Improving Learning and Motivation through Educational Games: Multidisciplinary Approaches. DOI: https://doi.org/10.4018/978-1-60960-495-0.ch006.
Easttom, C. (2021). BCI glossary and functional model by the IEEE p2731 working group. Brain-Computer Interfaces, 8(3):39–41. DOI: https://doi.org/10.1080/2326263x.2021.1967659.
Fernandez, H., Mikami, K., and Kondo, K. (2016). Adaptable game experience through procedural content generation and brain computer interface. In ACM SIGGRAPH 2016 Posters. ACM. DOI: https://doi.org/10.1145/2945078.2945124.
Ferreira, A., de Miranda, L., and de Miranda, E. (2012). Interfaces cérebro-computador de sistemas interativos: Estado da arte e desafios de IHC. In Anais do XI Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais (ACM International Conference Proceeding Series), pages 239–248. SBC. DOI: https://doi.org/10.1109/icawst.2017.8256530.
Ferreira, A. L. S., de Miranda, L. C., de Miranda, E. E. C., and Sakamoto, S. G. (2013). A survey of interactive systems based on brain-computer interfaces. SBC Journal on 3D Interactive Systems, 4(1):3–13. DOI: https://doi.org/10.5753/jis.2013.623.
Ferreira, A. L. S., Marciano, J. N., de Miranda, L. C., and de Miranda, E. E. C. (2014). Understanding and proposing a design rationale of digital games based on brain-computer interface: Results of the Admiralmind Battleship study. SBC Journal on Interactive Systems, 5(1):3–15. DOI: https://doi.org/10.5753/jis.2014.638.
Finke, A., Lenhardt, A., and Ritter, H. (2009). The MindGame: A P300-based brain–computer interface game. Neural Networks, 22(9):1329–1333. DOI: https://doi.org/10.1016/j.neunet.2009.07.003.
Friedrich, E. V. C., Suttie, N., Sivanathan, A., Lim, T., Louchart, S., and Pineda, J. A. (2014). Brain–computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Frontiers in Neuroengineering, 7:21. DOI: https://doi.org/10.3389/fneng.2014.00021.
Gonçalves, A. M., Soares, B. G., Adamatti, D. F., and Guimarães, E. S. (2023). Wild jumper: um jogo para análise do estado mental do jogador e tratamento do transtorno de déficit de atenção e hiperatividade. In Anais Estendidos do XXII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames Estendido 2023), SBGames Estendido 2023, page 1260–1269. Sociedade Brasileira de Computação. DOI: https://doi.org/10.5753/sbgames_estendido.2023.234174.
Gordon, E. C. and Seth, A. K. (2024). Ethical considerations for the use of brain–computer interfaces for cognitive enhancement. PLOS Biology, 22(10):e3002899. DOI: https://doi.org/10.1371/journal.pbio.3002899.
Gurkok, H., Nijholt, A., and Poel, M. (2016). Brain-computer interface games: Towards a framework. In Handbook of Digital Games and Entertainment Technologies, pages 133–150. Springer Singapore. DOI: https://doi.org/10.1007/978-981-4560-50-4_5.
Hasan, B. A. S. and Gan, J. Q. (2012). Hangman BCI: An unsupervised adaptive self-paced brain–computer interface for playing games. Computers in Biology and Medicine, 42(5):598–606. DOI: https://doi.org/10.1016/j.compbiomed.2012.02.004.
Heintz, S. and Law, E. L.-C. (2015). The game genre map. In Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play. ACM. DOI: https://doi.org/10.1145/2793107.2793123.
Henrik, C., Olle, H., Craig, L., Charlotte, S., and Jeanette, E. (2011). The aiming game: using a game with biofeedback for training in emotion regulation. In Proceedings of the DiGRA International Conference: Think Design Play (DiGRA’11), page 18. DOI: https://doi.org/10.26503/dl.v2011i1.523.
Hjorungdal, R.-M., Sanfilippo, F., Osen, O. L., Rutle, A., and Bye, R. T. (2016). A game-based learning framework for controlling brain-actuated wheelchairs. In ECMS 2016 Proceedings edited by Thorsten Claus, Frank Herrmann, Michael Manitz, Oliver Rose. ECMS. DOI: https://doi.org/10.7148/2016-0554.
Hong, K.-S. and Khan, M. J. (2017). Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: A review. Frontiers in Neurorobotics, 11. DOI: https://doi.org/10.3389/fnbot.2017.00035.
Horie, R. and Nawa, R. (2017). A hands-on game by using a brain-computer interface, an immersive head mounted display, and a wearable gesture interface. In 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). IEEE. DOI: https://doi.org/10.1109/gcce.2017.8229324.
Ienca, M., Fins, J. J., Jox, R. J., et al. (2022). Towards a governance framework for brain data. Neuroethics, 15:20. DOI: https://doi.org/10.1007/s12152-022-09498-8.
Ienca, M. and Malgieri, G. (2022). Mental data protection and the gdpr. Journal of Law and the Biosciences, 9(1):lsac006. DOI: https://doi.org/10.1093/jlb/lsac006.
Israsena, P., Hemrungrojn, S., Sukwattanasinit, N., and Maes, M. (2015). Development and evaluation of an interactive electro-encephalogram-based neurofeedback system for training attention and attention defects in children. Journal of Medical Imaging and Health Informatics, 5(5):1045–1052. DOI: https://doi.org/10.1166/jmihi.2015.1492.
Joselli, M., Binder, F., Clua, E., and Soluri, E. (2014). Mind-ninja: Concept, development and evaluation of a mind action game based on EEGs. In 2014 Brazilian Symposium on Computer Games and Digital Entertainment. IEEE. DOI: https://doi.org/10.1109/sbgames.2014.14.
Kaplan, A. Y., Shishkin, S. L., Ganin, I. P., Basyul, I. A., and Zhigalov, A. Y. (2013). Adapting the p300-based brain–computer interface for gaming: A review. IEEE Transactions on Computational Intelligence and AI in Games, 5(2):141–149. DOI: https://doi.org/10.1109/TCIAIG.2012.2237517.
Kerous, B., Skola, F., and Liarokapis, F. (2018). EEG-based BCI and video games: a progress report. Virtual Reality, 22(2):119–135. DOI: https://doi.org/10.1007/s10055-017-0328-x.
Koo, B., Lee, H.-G., Nam, Y., and Choi, S. (2015). Immersive BCI with SSVEP in VR head-mounted display. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. DOI: https://doi.org/10.1109/embc.2015.7318558.
Kosmyna, N. and Lécuyer, A. (2019). A conceptual space for EEG-based brain-computer interfaces. PLOS ONE, 14(1):1–30. DOI: https://doi.org/10.1371/journal.pone.0210145.
Laamarti, F., Eid, M., and Saddik, A. E. (2014). An overview of serious games. International Journal of Computer Games Technology, 2014(1):15. DOI: https://doi.org/10.1155/2014/358152.
Lalor, E. C., Kelly, S. P., Finucane, C., Burke, R., Smith, R., Reilly, R. B., and McDarby, G. (2005). Steady-state VEP-based brain-computer interface control in an immersive 3d gaming environment. EURASIP Journal on Advances in Signal Processing, 2005(19). DOI: https://doi.org/10.1155/asp.2005.3156.
Lance, B. J., Touryan, J., Wang, Y.-K., Lu, S.-W., Chuang, C.-H., Khooshabeh, P., Sajda, P., Marathe, A., Jung, T.-P., Lin, C.-T., and McDowell, K. (2016). Towards serious games for improved BCI. In Handbook of Digital Games and Entertainment Technologies, pages 197–224. Springer Singapore. DOI: https://doi.org/10.1007/978-981-4560-50-4_4.
Lazarou, I., Nikolopoulos, S., Petrantonakis, P. C., Kompatsiaris, I., and Tsolaki, M. (2018). EEG-based brain–computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century. Frontiers in Human Neuroscience, 12:14. DOI: https://doi.org/10.3389/fnhum.2018.00014.
Leeb, R., Lancelle, M., Kaiser, V., Fellner, D. W., and Pfurtscheller, G. (2013). Thinking Penguin: Multimodal brain–computer interface control of a VR game. IEEE Transactions on Computational Intelligence and AI in Games, 5(2):117–128. DOI: https://doi.org/10.1109/TCIAIG.2013.2242072.
Leite, H. M. D. A., Carvalho, S. N. D., Costa, T. B. D. S., Attux, R., Hornung, H. H., and Arantes, D. S. (2018). Analysis of user interaction with a brain-computer interface based on steady-state visually evoked potentials: Case study of a game. Computational Intelligence and Neuroscience, 2018:1–10. DOI: https://doi.org/10.1155/2018/4920132.
Li, J., qun Fu, H., feng Zhang, X., ling Ma, F., yu Zhang, T., xin Pan, G., and Tao, J. (2016). Research and development for upper limb amputee training system based on EEG and VR. In Wearable Sensors and Robots, pages 263–273. Springer Singapore. DOI: https://doi.org/10.1007/978-981-10-2404-7_21.
Li, M., Li, F., Pan, J., Zhang, D., Zhao, S., Li, J., and Wang, F. (2021). The MindGomoku: An online p300 BCI game based on bayesian deep learning. Sensors, 21(5):1613. DOI: https://doi.org/10.3390/s21051613.
Li, T., Zhang, J., Xue, T., and Wang, B. (2017). Development of a novel motor imagery control technique and application in a gaming environment. Computational Intelligence and Neuroscience, 2017:1–16. DOI: https://doi.org/10.1155/2017/5863512.
Lim, H. and Ku, J. (2018). A brain–computer interface-based action observation game that enhances mu suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(12):2290–2296. DOI: https://doi.org/10.1109/tnsre.2018.2878249.
Liu, Y., Hou, X., Sourina, O., and Bazanova, O. (2016). Individual Theta/Beta Based Algorithm for Neurofeedback Games to Improve Cognitive Abilities. In Gavrilova, M. L. and Tan, C. K., editors, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9570 of Lecture Notes in Computer Science, pages 57–73. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-662-49247-5_4.
Livanis, E., Voultsos, P., Vadikolias, K., Pantazakos, P., and Tsaroucha, A. (2024). Understanding the ethical issues of brain-computer interfaces (bcis): A blessing or the beginning of a dystopian future? Cureus. DOI: https://doi.org/10.7759/cureus.58243.
Lope, R. P. D. and Medina-Medina, N. (2017). A comprehensive taxonomy for serious games. Journal of Educational Computing Research, 55(5):629–672. DOI: https://doi.org/10.1177/0735633116681301.
Maby, E., Perrin, M., Bertrand, O., Sanchez, G., and Mattout, J. (2012). BCI could make old two-player games even more fun: A proof of concept with “Connect Four”. Advances in Human-Computer Interaction, 2012:1–8. DOI: https://doi.org/10.1155/2012/124728.
Machado, F. S. V., Casagrande, W. D., Frizera, A., and da Rocha, F. E. M. (2019). Development of serious games for neurorehabilitation of children with attention-deficit/hyperactivity disorder through neurofeedback. In 2019 18th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), page 91–97. IEEE. DOI: https://doi.org/10.1109/sbgames.2019.00022.
Marçal, E., Costa, N. M. G. B. d., Menezes, C. E., Peixoto Júnior, A. A., Sanders, L. L. O., Queiroz, K. M., Oliveira, E. C., and Mota, L. M. Q. P. (2022). Neurofeedback and brain-computer interface: development and evaluation of a game designed to help in the detection of ADHD. Res. Soc. Dev., 11(12):e90111233752. DOI: https://doi.org/10.33448/rsd-v11i12.33752.
Marshall, D., Coyle, D., Wilson, S., and Callaghan, M. (2013). Games, gameplay, and BCI: The state of the art. IEEE Transactions on Computational Intelligence and Al in Games, 5(2):82–99. DOI: https://doi.org/10.1109/TCIAIG.2013.2263555.
Mason, S. G. and Birch, G. E. (2003). A general framework for brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(1):70–85. DOI: https://doi.org/10.1109/TNSRE.2003.810426.
Mason, S. G., Jackson, M. M. M., and Birch, G. E. (2005). A general framework for characterizing studies of brain interface technology. Annals of Biomedical Engineering, 33(11):1653–1670. DOI: https://doi.org/10.1007/s10439-005-7706-3.
McCallum, S. and Boletsis, C. (2013). A taxonomy of serious games for dementia. In Games for Health, pages 219–232. DOI: https://doi.org/10.1007/978-3-658-02897-8_17.
McMahon, M. and Schukat, M. (2018). A low-cost, open-source, BCI- VR game control development environment prototype for game based neurorehabilitation. In 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE. DOI: https://doi.org/10.1109/gem.2018.8516468.
Mehta, N. A., Hameed, S. H. S., and Jackson, M. M. (2010). Optimal control strategies for an SSVEP-based brain-computer interface. International Journal of Human-Computer Interaction, 27(1):85–101. DOI: https://doi.org/10.1080/10447318.2011.535755.
Monteiro, G. T. and Adamatti, D. F. (2020). Serious games e neurofeedback como alternativa de tratamento de indivíduos com transtorno de déficit de atenção e hiperatividade: uma revisão sistemática. In Anais do XXXI Simpósio Brasileiro de Informática na Educação (SBIE 2020). Sociedade Brasileira de Computação. DOI: https://doi.org/10.5753/cbie.sbie.2020.752.
Mühl, C., Gürkök, H., Plass-Oude Bos, D., Thurlings, M. E., Scherffig, L., Duvinage, M., Elbakyan, A. A., Kang, S., Poel, M., and Heylen, D. (2010). Bacteria hunt. Journal on Multimodal User Interfaces, 4(1):11–25. DOI: https://doi.org/10.1007/s12193-010-0046-0.
Muñoz, J. E., Gonçalves, A., Vieira, T., Cró, D., Chisik, Y., and Bermúdez i Badia, S. (2016). Space Connection - a multiplayer collaborative biofeedback game to promote empathy in teenagers: A feasibility study. In Proceedings of the 3rd International Conference on Physiological Computing Systems, pages 88–97. DOI: https://doi.org/10.5220/0005948400880097.
Murphy, B., Aleni, A., Belaoucha, B., Dyer, J., and Nolan, H. (2018). Quantifying cognitive aging and performance with at-home gamified mobile EEG. In 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI). IEEE. DOI: https://doi.org/10.1109/prni.2018.8423954.
Nicolas-Alonso, L. F. and Gomez-Gil, J. (2012). Brain-computer interfaces, a review. Sensors, 12(2):1211–1279. DOI: https://doi.org/10.3390/s120201211.
Nijholt, A., Bos, D. P.-O., and Reuderink, B. (2009). Turning shortcomings into challenges: Brain-computer interfaces for games. Entertainment Computing, 1(2):85–94. DOI: https://doi.org/10.1016/j.entcom.2009.09.007.
Obbink, M., Gürkök, H., Bos, D. P.-O., Hakvoort, G., Poel, M., and Nijholt, A. (2012). Social interaction in a cooperative brain-computer interface game. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pages 183–192. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-30214-5_20.
Ochi, Y., Laksanasopin, T., Kaewkamnerdpong, B., and Thanasuan, K. (2017). Neurofeedback game for attention training in adults. In 2017 10th Biomedical Engineering International Conference (BMEiCON). IEEE. DOI: https://doi.org/10.1109/bmeicon.2017.8229113.
Parafita, R., Pires, G., Nunes, U., and Castelo-Branco, M. (2013). A spacecraft game controlled with a brain-computer interface using SSVEP with phase tagging. In 2013 IEEE 2nd International Conference on Serious Games and Applications for Health (SeGAH). IEEE. DOI: https://doi.org/10.1109/segah.2013.6665309.
Paszkiel, S., Rojek, R., Lei, N., and Castro, M. A. (2021). A pilot study of game design in the unity environment as an example of the use of neurogaming on the basis of brain–computer interface technology to improve concentration. NeuroSci, 2(2):109–119. DOI: https://doi.org/10.3390/neurosci2020007.
Prapas, G., Glavas, K., Tzimourta, K. D., Tzallas, A. T., and Tsipouras, M. G. (2023). Mind the move: Developing a brain-computer interface game with left-right motor imagery. Information, 14(7):354. DOI: https://doi.org/10.3390/info14070354.
Putri, F., Ding, H., Garcia, A., and Vuckovic, A. (2019). Towards successful multi-user brain-computer interface (BCI) gaming: Analysis of the EEG signatures and connectivity. In Proceedings of the 3rd International Conference on Computer-Human Interaction Research and Applications. SCITEPRESS - Science and Technology Publications. DOI: https://doi.org/10.5220/0008201400590065.
Ramadan, R. A. and Vasilakos, A. V. (2017). Brain computer interface: control signals review. Neurocomputing, 223:26 – 44. DOI: https://doi.org/10.1016/j.neucom.2016.10.024.
Reinschluessel, A. V. and Mandryk, R. L. (2016). Using Positive or Negative Reinforcement in Neurofeedback Games for Training Self-Regulation. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play - CHI PLAY ’16, pages 186–198, New York, New York, USA. ACM Press. DOI: https://doi.org/10.1145/2967934.2968085.
Scherer, R., Schwarz, A., Muller-Putz, G. R., Pammer-Schindler, V., and Garcia, M. L. (2016). Lets play tic-tac-toe: A brain-computer interface case study in cerebral palsy. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE. DOI: https://doi.org/10.1109/smc.2016.7844815.
Schoneveld, E. A., Malmberg, M., Lichtwarck-Aschoff, A., Verheijen, G. P., Engels, R. C., and Granic, I. (2016). A neurofeedback video game (MindLight) to prevent anxiety in children: A randomized controlled trial. Computers in Human Behavior, 63:321–333. DOI: https://doi.org/10.1016/j.chb.2016.05.005.
Serrano-Barroso, A., Siugzdaite, R., Guerrero-Cubero, J., Molina-Cantero, A. J., Gomez-Gonzalez, I. M., Lopez, J. C., and Vargas, J. P. (2021). Detecting attention levels in ADHD children with a video game and the measurement of brain activity with a single-channel BCI headset. Sensors, 21(9):3221. DOI: https://doi.org/10.3390/s21093221.
Škola, F. and Liarokapis, F. (2018). Embodied VR environment facilitates motor imagery brain–computer interface training. Computers & Graphics, 75:59–71. DOI: https://doi.org/10.1016/j.cag.2018.05.024.
Song, X., Xie, S., and Meng, W. (2017). A hybrid BCI for gaming. In Biomechatronics in Medical Rehabilitation, pages 91–105. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-52884-7_5.
Sourina, O., Liu, Y., Wang, Q., and Nguyen, M. K. (2011). EEG-based personalized digital experience, volume 6766 of Lecture Notes in Computer Science, chapter Universal Access in Human-Computer Interaction. Users Diversity, pages 393–422. Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-21663-3_64.
Stein, A., Yotam, Y., Puzis, R., Shani, G., and Taieb-Maimon, M. (2018). EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertainment Computing, 25(December 2017):14–25. DOI: https://doi.org/10.1016/j.entcom.2017.11.003.
Sun, X. and Ye, B. (2023). The functional differentiation of brain–computer interfaces (bcis) and its ethical implications. Humanities & Social Sciences Communications, 10(878). DOI: https://doi.org/10.1057/s41599-023-02419-x.
Sung, Y., Cho, K., and Um, K. (2012). A development architecture for serious games using BCI (brain computer interface) sensors. Sensors, 12(11):15671–15688. DOI: https://doi.org/10.3390/s121115671.
Tangermann, M., Krauledat, M., Grzeska, K., Sagebaum, M., Blankertz, B., Vidaurre, C., and Müller, K.-R. (2008). Playing Pinball with non-invasive BCI. In Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, volume 21, pages 1641–1648. Neural Information Processing Systems.
van de Laar, B., Gürkök, H., Bos, D. P.-O., Poel, M., and Nijholt, A. (2013). Experiencing BCI control in a popular computer game. IEEE Transactions on Computational Intelligence and AI in Games, 5(2):176–184. DOI: https://doi.org/10.1109/TCIAIG.2013.2253778.
van der Pal, J., Roos, C., and Sewnath, G. (2018). Exploring adaptive game-based learning using brain measures. In Digital Technologies: Sustainable Innovations for Improving Teaching and Learning, pages 161–171. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-73417-0_10.
van Vliet, M., Robben, A., Chumerin, N., Manyakov, N. V., Combaz, A., and Hulle, M. M. V. (2012). Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference (BRC’12), pages 1–6. DOI: https://doi.org/10.1109/BRC.2012.6222186.
Vasiljevic, G. A. M. and de Miranda, L. C. (2019a). The effect of auditory stimuli on user’s meditation and workload in a brain–computer interface game. Interacting with Computers, 31(3):250–262. DOI: https://doi.org/10.1093/iwc/iwz014.
Vasiljevic, G. A. M. and de Miranda, L. C. (2019b). The influence of graphical elements on user’s attention and control on a neurofeedback-based game. Entertainment Computing, 29:10–19. DOI: https://doi.org/10.1016/j.entcom.2018.10.003.
Vasiljevic, G. A. M. and de Miranda, L. C. (2020a). Brain–computer interface games based on consumer-grade EEG devices: A systematic literature review. International Journal of Human-Computer Interaction, 36(2):105–142. DOI: https://doi.org/10.1080/10447318.2019.1612213.
Vasiljevic, G. A. M. and de Miranda, L. C. (2020b). A general model for electroencephalography-controlled brain-computer interface games. In Computational Science and Its Applications - ICCSA 2020, pages 174–189. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-58802-1_13.
Vasiljevic, G. A. M. and de Miranda, L. C. (2023). Model, taxonomy and methodology for research employing EEG-based brain-computer interface games. In Proceedings of the XXII Brazilian Symposium on Human Factors in Computing Systems, IHC’23, page 1–10. ACM. DOI: https://doi.org/10.1145/3638067.3638114.
Vasiljevic, G. A. M. and de Miranda, L. C. (2024a). The CoDIS taxonomy for brain-computer interface games controlled by electroencephalography. International Journal of Human-Computer Interaction, 40(15):3908–3935. DOI: https://doi.org/10.1080/10447318.2023.2203006.
Vasiljevic, G. A. M. and de Miranda, L. C. (2024b). Comparing users' performance and game experience between a competitive and collaborative brain-computer interface. Behaviour & Information Technology, 43(1):40–59. DOI: https://doi.org/10.1080/0144929x.2022.2152727.
Vasiljevic, G. A. M., de Miranda, L. C., and de Menezes, B. C. (2018a). Mental War: An attention-based single/multiplayer brain-computer interface game. In Lecture Notes in Computer Science, volume 10960, pages 450–465. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-95162-1_31.
Vasiljevic, G. A. M., de Miranda, L. C., and de Menezes, B. C. (2018b). Zen Cat: A Meditation-Based Brain-Computer Interface Game. In Lecture Notes in Computer Science, volume 10960, pages 294–309. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-95162-1_20.
Vourvopoulos, A., Ferreira, A., and i Badia, S. B. (2016). NeuRow: An immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback. In Proceedings of the 3rd International Conference on Physiological Computing Systems. SCITEPRESS - Science and Technology Publications. DOI: https://doi.org/10.5220/0005939400430053.
Wang, Y., Nakanishi, M., and Zhang, D. (2019). EEG-based brain-computer interfaces. In Advances in Experimental Medicine and Biology, pages 41–65. Springer Singapore. DOI: https://doi.org/10.1007/978-981-13-2050-7_2.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6):767–791. DOI: https://doi.org/10.1016/s1388-2457(02)00057-3.
Yeh, S.-C., Hou, C.-L., Peng, W.-H., Wei, Z.-Z., Huang, S., Kung, E. Y.-C., Lin, L., and Liu, Y.-H. (2018). A multiplayer online car racing virtual-reality game based on internet of brains. Journal of Systems Architecture, 89:30–40. DOI: https://doi.org/10.1016/j.sysarc.2018.06.004.
Zhou, T., Chen, A., and Chen, K. (2017). A brain computer interface based on motor imagery for maze game. In 2017 10th International Symposium on Computational Intelligence and Design (ISCID). IEEE. DOI: https://doi.org/10.1109/iscid.2017.16.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Gabriel Vasiljevic, Leonardo Cunha de Miranda

This work is licensed under a Creative Commons Attribution 4.0 International License.
JIS is free of charge for authors and readers, and all papers published by JIS follow the Creative Commons Attribution 4.0 International (CC BY 4.0) license.


