JEDi – A Digital Educational Game to Support Student Training in Identifying Portuguese Written Fake News: Case Studies in High-School and Undergraduate Scenarios
DOI:
https://doi.org/10.5753/rbie.2021.29.0.634Keywords:
Educação Midiática, Jogos Educacionais Digitais, Detecção de Fake NewsAbstract
One of the strategies to combat the fake news problem is to train people to identify this kind of news. Although there are initiatives where such training is supported by digital educational games (DEG), the DEG used do not have portuguese-written news. To fill this gap, this article presents JEDi, a JED that trains students to identify intentionally disseminated, portuguese-written false news. JEDi takes place on a board to be traversed by the players as they discern between true and false news. The winner is the player that reaches the board's end first. The idea is that, as they play several times, players develop the ability to recognize fake news. By storing the players' individual results, JEDi allows analyzing, with data mining techniques, each player's longitudinal performance and, therefore, its effectiveness in false news recognition training. This paper reports the use of JEDi in a case study with high school and another with undergraduate students. Quantitative and qualitative results obtained in both studies point to JEDi's effectiveness as a fake news detection training instrument.
Downloads
References
Abreu, P. M. R., Berwanger, P. M., & Costa, R. B. (2018). Gameficação e as fakenews: uma análise do jogo cheque isso! Projeção e Docência, 9(2), 167–177. [GS Search]
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Sigmod Rec., 22(2), 207–216. doi: 10.1145/170035.170072 [GS Search]
Ajao, O., Bhowmik, D., & Zargari, S. (2019, May). Sentiment aware fake news detection on online social networks. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speechand Signal Processing (ICASSP) (pp. 2507–2511). doi: 10.1109/ICASSP.2019.8683170 [GS Search]
Antonialli, F., Antonialli, L., & Antonialli, R. (2017). Usos e abusos da escala likert: estudo bibliométrico nos anais do enanpad de 2010 a 2015. , 22(4), 1–19. [GS Search]
Auberry, K. (2018). Increasing students’ ability to identify fake news through information literacy education and content management systems. The Reference Librarian, 59(4), 179–187. doi: 10.1080/02763877.2018.1489935 [GS Search]
Bezerra, E. (2007). Princípios de análise e projeto de sistema com UML (Vol. 2). Rio de Janeiro: Elsevier. [GS Search]
Campan, A., Cuzzocrea, A., & Truta, T. M. (2017). Fighting fake news spread in online social networks: Actual trends and future research directions. In 2017 IEEE International Con onBig Data (Big Data) (pp. 4453–4457). doi: 10.1109/BigData.2017.8258484 [GS Search]
Castelo, S., Almeida, T., Elghafari, A., Santos, A., Pham, K., Nakamura, E., & Freire, J. (2019). A topic-agnostic approach for identifying fake news pages. In Companion Proceedings of The 2019 World Wide Web Conference (pp. 975–980). New York, NY, USA: ACM. doi: 10.1145/3308560.3316739 [GS Search]
Conroy, N., Rubin, V., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Association for Information Science and Technology, 52, 1-4. doi: 10.1002/pra2.2015.145052010082 [GS Search]
Empirico, S. (1997). Hipotiposes pirrônicas livro i (tradução de danilo marcondes). O que nos faz pensar, 9(12), 115–122. Retrieved from [Link]
Faceli, K., Lorena, A., Gama, J., & De Carvalho, A. (2011). Inteligência artificial: uma abordagem de aprendizado de máquina. LTC. Retrieved from [link]
Flintham, M., Karner, C., Bachour, K., Creswick, H., Gupta, N., & Moran, S. (2018). Falling for fake news: Investigating the consumption of news via social media. In Proceedings of the 2018 CHI Con on Human Factors in Computing Systems (pp. 376:1–376:10). New York, NY, USA: ACM. doi: 10.1145/3173574.3173950 [GS Search]
Francesco, N. N., & Leone, S. D. (2020). 1. educação midiática contra "fake news". Revista Científica UMC, 5(1), 1–15. Retrieved from [link]
Freire, P., & Goldschmidt, R. (2020). Combatendo fake news nas redes sociais via crowd signals implícitos. In Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional (pp. 424–435). RS, Brasil: SBC. doi: 10.5753/eniac.2019.9303 [GS Search]
Freire, P. M. S., & Goldschmidt, R. R. (2019). Uma introdução ao combate automático às fake news em redes sociais virtuais. In Tópicos de Gerenciamento de Dados e Informação (pp. 38–67). Fortaleza, CE, Brazil: SBC. doi: 10.5753/sbbd.2019 [GS Search]
Golbeck, J., et al. (2018). Fake news vs satire: A dataset and analysis. In Proceedings of the 10th ACM Con on Web Science (pp. 17–21). New York, NY, USA: ACM. doi: 10.1145/3201064.3201100 [GS Search]
Goldschmidt, R., Bezerra, E., & Passos, E. (2015). Data mining: Conceitos, técnicas, algoritmos, orientações e aplicações. Rio de Janeiro: Elsevier.
Krawczyk, N. (1999). A gestão escolar: um campo minado... Análise das propostas de 11 municípios brasileiros. Educação & Sociedade, 20(67), 112 - 149. doi: 10.1590/S0101-73301999000200005 [GS Search]
Magalhães, M. N., & Lima, A. C. P.(2010). Noções de probabilidade e estatística. São Paulo: USP.
Marwick, A., & Lewis, R. (2017). Media manipulation and disinformation online. New York: Data & Society Research Institute. Retrieved from [Link]
McGuire, W. J. (1964). Some contemporary approaches. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 1, p. 191 - 229). Elsevier. doi: 10.1016/S0065-2601(08)60052-0 [GS Search]
Mejova, Y., & Kalimeri, K. (2020). Advertisers jump on coronavirus bandwagon: Politics, news, and business. ArXiv, 2003.00923, 1–11. Retrieved from [link]
Musgrove, A. T., Powers, J. R., Rebar, L. C., & Musgrove, G. J. (2018). Real or fake? resources for teaching college students how to identify fake news. College & Undergraduate Libraries, 25(3), pp. 243–260. doi: 10.1080/10691316.2018.1480444 [GS Search]
Mustafaraj, E., & Metaxas, P. T. (2017, June). The fake news spreading plague:was it preventable? InWeb science con (p. 235-239). doi: 10.1145/3091478.3091523 [GS Search]
Nascimento, C. E. G. (2020). Fake news, mentira organizada e educação: Uma reflexão a partir do pensamento de hammah arendt. Revista Docência e Cibercultura, 4, 243–263. doi: 10.12957/redoc.2020.47553 [GS Search]
Passos, C., Fernandes, I., & Goldschmidt, R. (2019). Elaboração e avaliação de projeto de aprendizagem apoiado em jogos educacionais digitais: Um relato de experiência com alunos em alfabetização. In Proceedings of the Brazilian Symposium on Computers in Education(Simpósio Brasileiro de Informática na Educação - SBIE) (p. 674). SBC. doi: 10.5753/cbie.sbie.2019.674 [GS Search]
Paz, D. P., Franco, M., de Castro Bertagnolli, S., & Costa, H. J. (2018). Desenvolvimento e avaliação de um jogo digital educacional sobre aspectos socioculturais de países hispano falantes. In Proceedings of the Brazilian Symposium on Computers in Education (Simpósio Brasileirode Informática na Educação - SBIE) (p. 795). doi: 10.5753/cbie.sbie.2018.795 [GS Search]
Reis, J. C. S., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Explainable machine learning for fake news detection. In Proceedings of the 10th ACM Conference on WebScience (p. 17–26). New York, NY, USA: ACM. doi: 10.1145/3292522.3326027 [GS Search]
Rodrigues, J. G. (2013). O relativismo acerca da verdade refuta-se a si mesmo? Revista Portuguesa de Filosofia, 69(3/4), 777–806. Retrieved from [Link]
Roozenbeek, J., & van der Linden, S. (2019a). The fake news game: actively inoculating against the risk of misinformation. Journal of Risk Research, 22(5), 570-580. doi: 10.1080/13669877.2018.1443491 [GS Search]
Roozenbeek, J., & van der Linden, S. (2019b). Fake news game confers psychological resistance against online misinformation. Palgrave Communications, 5(1), 65. doi: 10.1057/s41599-019-0279-9 [GS Search]
Savi, R., Wangenheim, C., & Borgatto, A. (2011). Um modelo de avaliação de jogos educacionaisna engenharia de software. Proceedings of the 25th Brazilian Symposium on SoftwareEngineering (SBES). SBC. doi: 10.1109/SBES.2011.27 [GS Search]
Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., & Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol., 10(3), 21:1–21:42. doi: 10.1145/3305260 [GS Search]
Shu, K., Sliva, A.,Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. SIGKDD Explor. Newsl., 19(1), 22–36. doi: 10.1145/3137597.3137600 [GS Search]
Silva, F. (2020). FakeNewsSetGe: um processo para construção de datasets que viabilizem a comparação entre métodos de detecção de fake news baseados em diferentes demandas de informação. Mestrado em sistemas e computação, Instituto Militar de Engenharia (IME), Rio de Janeiro, Brasil. Retrieved from [Link]
Sponholz, L. (2009). O que é mesmo um fato? conceitos e suas conseqüências para o jornalismo.In Revista galáxia (p. 56-69). PUC-SP. Retrieved from [link]
UNESCO (2016). Marco de avaliação global da alfabetização midiática e informacional (ami): disposição e competências do país. Cetic.br. Retrieved from [Link]
UNESCO (2019). Jornalismo, fake news desinformação - manual para educação e treinamento em jornalismo. Author. Retrieved from [Link]
Vosoughi, S., Mohsenvand, M. N., & Roy, D. (2017). Rumor gauge: Predicting the veracity of rumors on twitter. ACM Trans. Knowl. Discov. Data, 11(4), 50:1–50:36. 10.1145/3070644 [GS Search]
Wang, P., Angarita, R., & Renna, I. (2018). Is this the era of misinformation yet: Combining social bots and fake news to deceive the masses. In Companion proceedings of the the web con 2018 (pp. 1557–1561). Republic and Canton of Geneva, Switzerland: International WorldWideWeb Con Steering Committee. 10.1145/3184558.3191610 [GS Search]
Zhou, X., & Zafarani, R. (2020). Fake news: A survey of research, detection methods, and opportunities. ACM Computing Surveys, 53(5), 1-40. doi: 10.1145/3395046 [GS Search]
Zhou, X., Zafarani, R., Shu, K., & Liu, H. (2019). Fake news: Fundamental theories, detection strategies and challenges.In WSDM ’19: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (pp. 836–837). NY, USA: ACM. doi: 10.1145/3289600.3291382 [GS Search]
Additional Files
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.