Sequencing of Pedagogical Actions based on Bloom's Taxonomy using Automated Planning supported by Genetic Algorithm

Authors

DOI:

https://doi.org/10.5753/rbie.2021.29.0.485

Keywords:

Artificial Intelligence Planning, Taxonomy of educational objectives, RASI, Genetic Algorithm

Abstract

This work investigated the Artificial Intelligence planning for pedagogical actions sequencing, according to the student's profile. The actions represented the cognitive process given by Bloom's Taxonomy (BT) and the student profile was modeled by the Revised Approaches to Studying Inventory (RASI). To measure the suitability of a sequence to the student's profile, it was necessary to map these two theories, this mapping being one of the contributions of this study. Thus, the sequencing of actions was formulated as an optimization problem and developed through Genetic Algorithm. The proposition of the function to be optimized for this problem is also a contribution, since establishing criteria to evaluate pedagogical aspects has been a challenge for Informatics in Education. Experiments carried out had 41 participants who answered the RASI inventory and, after receiving and analyzing the sequences of actions generated by the planner proposed in this work, they also answered a satisfaction questionnaire about the sequence. The results obtained can be considered promising, demonstrating the feasibility of the research.

Downloads

Download data is not yet available.

Author Biographies

Newarney Torrezão da Costa, Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano

Bachelor's at Computer Science (2010), Master's at Computer Science (2013) and is currently attending PhD at Computer Science from Universidade Federal de Uberlândia. He is currently a teacher at the Instituto Federal Goiano - IF Goiano.

Márcia Aparecida Fernandes, Universidade Federal de Uberlândia - UFU

Bachelor's at Licenciatura Plena Em Matemática from Universidade Federal de Uberlândia (1985), master's at Computer Science from Universidade Federal do Rio de Janeiro (1989) and doctorate at Computer Science from Universidade Federal do Rio de Janeiro (1996). Has experience in Computer Science, acting on the following subjects: distance education, learning objects, multiagent systems, planning and artificial intelligence.

References

Agbonifo, O. C., & Olanrewaju, A. O. (2018). Genetic Algorithm-based Curriculum Sequencing Model For Personalized E-Learning System. International Journal of Education and Management Engineering, 5, pp. 27-35. doi: 10.5815/ijmecs.2018.05.04 [GS Serarch]

Ariyaratne, M. K., & Fernando, T. G. (2014). A comparative study on nature inspired algorithms with firefly algorithm. International Journal of Engineering and Technology, 4, pp. 611-617. [GS Search]

Brie, A. H., & Morignot, P. (2005). Genetic Planning Using Variable Length Chromosomes. ICAPS, (pp. 320-329). [GS Search]

Brown, S., White, S., Wakeling, L., & Naiker, M. (2015). Approaches and study skills inventory for students (ASSIST) in an introductory course in chemistry. Journal of University Teaching & Learning Practice, pp. 1-12. [GS Search]

Churches, A. (2010). Bloom's Digital Taxonomy. Australian School Library Association NSW Incorporated. [GS Search]

Costa, N., Pereira Júnior, C., & Fernandes, M. (2019). Recomendação de Ações Pedagógicas Utilizando Planejamento Automático e Taxonomia Digital de Bloom. Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019) (pp. 1531-1540). Brasília, Brasil: Sociedade Brasileira de Computação – SBC. doi: 10.5753/cbie.sbie.2019.1531 [GS Search]

Costa, N., Pereira Junior, C., Araújo, R., & Fernandes, M. (2019). Application of AI Planning in the Context of e-Learning. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT) (pp. 57-59). Maceio, Brazil: IEEE. doi: 10.1109/ICALT.2019.00021 [GS Search]

de Lima, E. S., Feijó, B., & Furtado, A. L. (2019). Procedural Generation of Quests for Games Using Genetic Algorithms and Automated Planning. SBC – Proceedings of SBGames 2019 (pp. 495-504). Rio de Janeiro, Brasil: SBC. [GS Search]

de Miranda, P. B., Ferreira, R., Castro, M. S., Neto, G. F., Souza, S. J., Santos, L. A., & Silva, L. L. (2019). Uma Abordagem Multiobjetivo para Recomendação de Caminhos de Aprendizagem para Grupo de Usuários. Revista Brasileira de Informática na Educação, 27(3), pp. 336-350. doi: 10.5753/RBIE.2019.27.03.226 [GS Search]

Engelbrecht, A. P. (2007). Computational intelligence: an introduction (2ª ed.). Pretoria, South Africa: John Wiley & Sons. [GS Search]

Entwistle, N., & Tait, H. (2013, March). Approaches and Study Skills Inventory for Students (ASSIST) (incorporating the Revised Approaches to Studying Inventory - RASI. Edinburgh: Centre for Research on Learning and Instruction, University of Edinburgh. [GS Search]

Ferraz, A. P., & Belhot, R. V. (2010). Taxonomia de Bloom: revisão teórica e apresentação das adequações do instrumento para definição de objetivos instrucionais. Gestão & Produção, 17(2), pp. 421-431. doi: 10.1590/S0104-530X2010000200015 [GS Search]

Garrido, A., Morales, L., & Serina, I. (2016). On the use of case-based planning for e-learning personalization. Expert Systems with Applications, 60, pp. 1-15. doi: 10.1016/j.eswa.2016.04.030 [GS Search]

Hssina, B. a. (2019). A Personalized Pedagogical Objectives Based on a Genetic Algorithm in an Adaptive Learning System. Procedia Computer Science, pp. 1152-1157. doi: 10.1016/j.procs.2019.04.164 [GS Search]

Júnior, C. P., Araújo, R. D., & Dorça, F. A. (2020). Recomendação Personalizada de Conteúdo Instrucional Complementar usando Repositório de Objetos de Aprendizagem e Recursos da Web. Anais do XXXI Simpósio Brasileiro de Informática na Educação (pp. 1293-1302). Natal, Brasil: SBC. doi: 10.5753/cbie.sbie.2020.1293 [GS Search]

Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory Into Practice, 41(4), pp. 212-218. doi: 10.1207/s15430421tip4104_2 [GS Search]

Limongelli, C., & Sciarrone, F. (2014). Fuzzy Student Modeling for Personalization of e-Learning Courses. Learning and Collaboration Technologies. Designing and Developing Novel Learning Experiences (pp. 292-301). Springer International Publishing. doi: 10.1007/978-3-319-07482-5_28 [GS Search]

Lin, Y.-S., Chang, Y.-C., & Chu, C.-P. (2016). An innovative approach to scheme learning map considering tradeoff multiple objectives. Journal of Educational Technology & Society, 19(1), pp. 142-157. [GS Search]

Machado, M., Barrére, E., & Souza, J. (2018). Uma Abordagem Evolutiva para o Problema de Sequenciamento Curricular Adaptativo. Simpósio Brasileiro de Informática na Educação-SBIE (pp. 1243-1252). Fortaleza, Brasil: SBC. doi: 10.5753/cbie.sbie.2018.1243 [GS Search]

Pireva, K., & Kefalas, P. (2018). A Recommender System Based on Hierarchical Clustering for Cloud e-Learning. Intelligent Distributed Computing XI, 53, pp. 235-245. doi: 10.1007/978-3-319-66379-1_21 [GS Search]

Rastegarmoghadam, M., & Ziarati, K. (2017). Improved modeling of intelligent tutoring systems using ant colony optimization. Education and Information Technologies, 22(3), pp. 1067-1087. doi: 10.1007/s10639-016-9472-2 [GS Search]

Richardson, J. T. (2000). Researching student learning: Approaches to studying in campus-based and distance education. Michigan, United States of America: Society for Research into Higher Education & Open University Press Buckingham. [GS Search]

Shang, H. (2019). Cultural Interpretation of Deep Approach to Learning: an Empirical Analysis in a Chinese University. Proceedings of Cross-Cultural Business Conference 2019 (pp. 207-218). Austria: Shaker Verlag GmbH. [GS Search]

Silva, R. C., Direne, A. I., Marczal, D., Borille, A. C., & Guimarães, P. R. (2018). Adaptabilidade de Objetos de Aprendizagem usando Calibragem e Sequenciamento Adaptativo de Exercícios. Revista Brasileira de Informática na Educação, 26(1), pp. 70-90. doi: 10.5753/rbie.2018.26.01.70 [GS Search]

Vanitha, V., Krishnan, P., & Elakkiya, R. (2019). Collaborative optimization algorithm for learning path construction in E-learning. Computers & Electrical Engineering, 77, pp. 325-338. doi: 10.1016/j.compeleceng.2019.06.016 [GS Search]

Published

2021-05-22

How to Cite

COSTA, N. T. da; FERNANDES, M. A. Sequencing of Pedagogical Actions based on Bloom’s Taxonomy using Automated Planning supported by Genetic Algorithm. Brazilian Journal of Computers in Education, [S. l.], v. 29, p. 485–501, 2021. DOI: 10.5753/rbie.2021.29.0.485. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/2791. Acesso em: 22 nov. 2024.

Issue

Section

Awarded Papers

Most read articles by the same author(s)