Research Trends in Educational Data Mining in MOOCS: A Systematic Mapping of Literature
DOI:
https://doi.org/10.5753/rbie.2020.28.0.491Keywords:
MOOCs, Educational Data Mining, Systematic ScopingAbstract
Massive Open Online Courses (MOOCs) use online platforms and attract different student profiles, offering qualification opportunities - whether formal or informal - in a very dynamic format. A characteristic of the platforms that offer such courses is the ability to store a large amount of data, which made it possible to explore it through Educational Data Mining (EDM) techniques. In this context, a systematic scoping was conducted in five databases with the purpose of discover research trends regarding to the use of EDM in MOOCs. The search covered the period from 2015 to 2020, selecting 158 papers. The results revealed that studies related to Behavior Analysis, Prediction (Performance, Abandonment, Conclusion), Text Mining and Recommendation Systems are the most frequent. Promissing researches were also identified, such as Social Network Analysis (SNA), Digital Learning Ecosystem (DLE) and Mind Wandering Analysis (MW). Methods and tools used in research were listed, as well as challenges in the use of EDM in research on MOOC. We concluded that the issue of class imbalance, caused by low adherence to courses, is one of the biggest challenges.
Downloads
References
Aldowaha, H.; Al-Samarraiea, H. & Fauzyb, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.[DOI: https://doi.org/10.1016/j.tele.2019.01.007].[GS Search]
Al-Shabandar, R.; Hussain, A.; Andy Laws, A.; Keight, R.; Lunn, J. & Radi, N. (2017). Machine learning approaches to predict learning outcomes in Massive open online courses. Proceedings of the International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, USA. [DOI: 10.1109/IJCNN.2017.7965922].[GS Search]
An, T.; Krauss, C. & Merceron, A. (2017). Can Typical Behaviors Identified in MOOCs Be Discovered in Other Courses? Proceedings of the 10th International Conference on Educational Data Mining (EDM). Wuhan, China, p.220-225.[GS Search]
Baker, R. S. J.; Isotani, S. & Carvalho, A. M. J. B. (2011). Mineração de dados educacionais: oportunidades para o Brasil. Revista Brasileira de Informática na Educação. v. 19, n. 2, p. 1-12. [DOI:http://dx.doi.org/10.5753/rbie.2011.19.02.03].[GS Search]
Balint, T. A. (2016). Depth Analysis of Problem-Solving Profiles of Students in Open Online Environments. ProQuest LLC, Ph.D. Dissertation, The George Washington University. p. 1-174.[GS Search]
Brinton, C. G.; Buccapatnam, S.; Zheng, L.; Cao, D.; Lan, A. S. & Felix M. F. (2018) On the Efficiency of Online Social Learning Networks. Journal IEEE/ACM Transactions on Networking. v. 26, n. 5, p. 2076-2089. [DOI: 10.1109 / TNET.2018.2859325].[GS Search]
Brooks, C.; Thompson, C. & Stephanie Teasley. (2015). A time series interaction analysis method for building predictive models of learners using log data. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge. p. 126–135.[DOI: https://dl.acm.org/doi/10.1145/2723576.2723581].[GS Search]
Butcher, N. (2014). Technologies in Higher Education: mapping the terrain. [online]. New York: Unesco. Disponível em:[Link para o Artigo]. [Acessado 08 Nov. 2019]. [GS Search]
Cobos, R. & Olmos, L. (2018). A Learning Analytics Tool for Predictive Modeling of Dropout and Certificate Acquisition on MOOCs for Professional Learning. Proceedings of the International Conference on Industrial Engineering and Engineering Management (IEEM). Bangkok, Thailand, p. 1533-1537.[DOI:10.1109 / IEEM.2018.8607541].[GS Search]
Davis, D.; Chen, G.; Hauff, C. & Houben, G. J. (2018). Activating learning at scale: A review of innovations in online learning strategies. Computers & Education, 125, 327-344.[DOI: https://doi.org/10.1016/j.compedu.2018.05.019].[GS Search]
Denyer, D. & Tranfield, D. (2009). Producing a systematic review. In: BUCHANAN, D. A.; BRYMAN, A. (Ed.). The SAGE handbook of organizational research methods. London, SAGE, p. 671-689.[GS Search]
Duru, I.; Dogan, G.; Diri, B. (2016). An overview of studies about students' performance analysis and learning analytics in MOOCs. Proceedings of the International Conference on Big Data (Big Data). Washington, DC, USA. [DOI: 10.1109/BigData.2016.7840786].[GS Search]
Fournier, H. & Kop, R. (2015). MOOC Learning Experience Design: Issues and Challenges. International Journal on E-Learning, 14(3), 289-304.[GS Search]
Galileo, M. M; Roca, M.; Barchino, R.; Hernández, R.; Amado-Salvatierra, H. R. (2019). Applying a Digital Learning Ecosystem to Increase the Effectiveness of a Massive Open Online Course. Proceedings of the IEEE Learning With MOOCS (LWMOOCS). Milwaukee, WI, USA.[DOI:10.1109/LWMOOCS47620.2019.8939636].[GS Search]
Guo, S. X.; Sun, X.; Wang, S. X.; Gao, Y. & Feng J. (2019). Attention-Based Character-Word Hybrid Neural Networks With Semantic and Structural Information for Identifying of Urgent Posts in MOOC Discussion Forums. Journal IEEE Access. v. 7, p. 120522-120532.[DOI:10.1109 / ACCESS.2019.2929211].[GS Search]
He, J.; Bailey, J.; Rubinstein, B. I. P. & Zhang, R. Identifying. (2015). At-Risk Students in Massive Open Online Courses. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. p. 1749–1755.[GS Search]
He, J.; Men, C.; Fang, S.; Du, Z.; Liu, J. & Li, M. (2018). Analysis of MOOC Learning Rhythms. Proceedings of the 20th International Conference on High Performance Computing and Communications. Exeter, United Kingdom, p. 1555-1562.[DOI: 10.1109/HPCC/SmartCity/DSS.2018.00255].[GS Search]
Hutt, S.; Hardey, J.; Bixler, R.; Stewart, A.; Risko, E. & D'Mello, S. K. (2017). Gaze-Based Detection of Mind Wandering during Lecture Viewing. Proceedings of the 10th International Conference on Educational Data Mining (EDM). Wuhan, China, p. 25-28.[GS Search]
Joksimović, S.; Kovanovic, V.; Jovanović, J.; Zouaq, A.; Gasevic, D. & Hatala, M. (2015). What do cMOOC participants talk about in social media?: a topic analysis of discourse in a Cmooc. Proceedings of the LAK '15 International Conference on Learning Analytics And Knowledge. P. 156-165.[DOI: https://doi.org/10.1145/2723576.2723609].[GS Search]
Kashyap, A. & Nayak, A. Different Machine Learning Models to Predict Dropouts in MOOCs. Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI). Bangalore, India, p.80-85.[DOI: 10.1109/ICACCI.2018.8554547].[GS Search]
Labarthe, H.; Bouchet, F.; Bachelet, R. &Yacef, K. (2016). Does a Peer Recommender Foster Students' Engagement in MOOCs? Proceedings of the 9th International Conference on Educational Data Mining (EDM). Raleigh, NC, p. 418-423.[GS Search]
Lan, A. S.; Brinton, C. G.; Yang, T. Y & Chiang, M. (2017). Behavior-Based Latent Variable Model for Learner Engagement. Proceedings of the 10th International Conference on Educational Data Mining (EDM), Wuhan, China, p. 64-71.[GS Search]
Lee, Y. (2018) Using Self-Organizing Map and Clustering to Investigate Problem Solving Patterns in the Massive Open Online Course: An Exploratory Study. Journal of Educational Computing, v. 57, no 2, p. 471-490.[DOI: 10.1177/0735633117753364].[GS Search]
Liñán, L. C. & Pérez, A. A. J. (2015). Educational Data Mining and Learning Analytics: differences, similarities, and time Evolution. Journal of Educational Technology in Higher Education. v. 12, n. 3, p. 98-112.[DOI: 10.7238/rusc.v12i3.2515].[GS Search]
Lu, X.; Wang, S.; Huang, J.; Chen, W.; & Yan, Z. (2017). What Decides the Dropout in MOOCs? In: DATABASE Systems for Advanced Applications. Cham: Springer International Publishing. p. 316–327. doi: 10.1007/978-3-319-55705-2_25.[GS Search]
Moissa, B.; Gasparini, I. & Kemczinski, A. (2015). Educational Data Mining versus Learning Analytics: estamos reinventando a roda? Um mapeamento sistemático. Proceedings of the XXVI Simpósio Brasileiro de Informática na Educação (SBIE 2015), Brasil, p. 1167-1176.[DOI: 10.5753/cbie.sbie.2015.116].[GS Search]
Northcutt, C. G.; Ho, A. D. & Chuang, I. L. (2016). Detecting and preventing ""multiple-account"" cheating in massive open online courses. Jounal Computers & Education. v. 100, p. 71-80.[DOI:10.1016/j.compedu.2016.04.008].[GS Search]
Petersen, K.; Feldt, R.; Mujtaba, S. & Mattsson, M. (2008). Systematic Mapping Studies in Software Engineering. Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, BCS Learning & Development Ltd., Italy, p. 68–77.[GS Search]
Pigeau, A.; Aubert, O. & Prié, Y. (2019). Success Prediction in MOOCs: A Case Study. Proceedings of the 12th International Conference on Educational Data Mining (EDM). Montreal, Canadá, p. 390-395.[GS Search]
Pursel, B.; Zhang, L.; Jablokow, K.; Choi, G. & Velegol, D. (2016). Understanding MOOC students: motivations and behaviours indicative of MOOC completion. Journal of Computer Assisted Learning. v. 32, n. 3, p. 202–217.[DOI: 10.1111/jcal.12131].[GS Search]
Ramos, A.; Faria, P. M.; Faria, A. (2014). Revisão sistemática de literatura: contributo para a inovação na investigação em Ciências da Educação. Revista Diálogo Educ., Curitiba, v. 14, n. 41, p. 17-36.[DOI:10.7213/dialogo.educ.14.041.DS01].[GS Search]
Romero, C. Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Syst. Appl. v. 1, n. 33, p. 135–146.[DOI:10.1016/j.eswa.2006.04.005].[GS Search]
Romero, C. Ventura, S. (2010). Educational Data Mining: A Review of the State of the Art. Jounal IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). v. 40, n. 6, 601-618.[DOI: 10.1109 / TSMCC.2010.2053532].[GS Search]
Romero, C. & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. v. 3, n. 1, p. 12-27.[DOI: 10.1002/widm.1075].[GS Search]
Romero, C. & Ventura, S. (2016). Educational data science in massive open online courses. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. v. 7, n. 1, p. 1-20.[DOI:https://doi.org/10.1002/widm.1187].[GS Search]
Shahiria, A. M; Husaina, W. & Rashida, N. A. (2015). A Review on Predicting Student's Performance Using Data Mining Techniques. Computer Science, 72, 414-422.[DOI: https://doi.org/10.1016/j.procs.2015.12.157].[GS Search]
Sukhija, K.; Jindal, M. & Aggarwal, N. (2015) .The recent state of educational data mining: A survey and future visions. Proceedings of the 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE). Amritsar, India.[DOI:0.1109 / MITE.2015.7375344].[GS Search]
Sunar, A. S.; Abbasi, R. A; Davis, H. C.; White, S. & Aljohani, N. R. (2018). Modelling MOOC learners' social behaviours. Jounal Computers in Human Behavior, p. 1-12.[DOI:https://doi.org/10.1016/j.chb.2018.12.013].[GS Search]
Wagner, R.; Passerino, L.; Silveira, S.; Franciscatto, R. & Lima, J. V. (2016). SolAssist Learning: formação em tecnologias assistivas através de um MOOC e uma biblioteca virtual de soluções assistivas. Revista Brasileira de Informática na Educação. v. 24, no 3, p. 62-74.[DOI:10.5753/rbie.2016.24.3.62].[GS Search]
Waheeda, H.; Hassana, S. U.; Aljohanib, N. R.; Hardmand, J.; Alelyanic, S. & Nawazd, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Journal Computers in Human Behavior, v. 104, p. 106-189.[DOI: https://doi.org/10.1016/j.chb.2019.106189].[GS Search]
Wen, Y.; Tian, Y.; Wen, B.; Zhou, Q.; Cai, G. & Liu, S. (2020). Consideration of the local correlation of learning behaviors to predict dropouts from MOOCs. Journal Tsinghua Science and Technology. v. 25, n. 3, p. 336-347.[DOI: 10.26599 / TST.2019.9010013].[GS Search]
Wulf, J.; Blohm, I.; Leimeister, J. M. & Brenner, W. (2014). Massive open online courses. Business & Information Systems Engineering. v. 6, no. 2, p. 111–114.[DOI:https://doi.org/10.1007/s12599-014-0313-9].[GS Search]
Xing, W.; Chen, X.; Stein, J. & Marcinkowski, M. (2016). Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization. Jounal Computers in Human Behavior. v. 58, p. 119-129. [DOI: https://doi.org/10.1016/j.chb.2015.12.007].[GS Search]
Zheng, S.; Wisniewski, P; Rosson, M. B. & Carroll, J. M. (2016). Ask the Instructors: Motivations and Challenges of Teaching Massive Open Online Courses. Proceeding CSCW '16. Proceedings of the 19th ACM Conference on ComputerSupported Cooperative Work & Social Computing. p. 206-221.[DOI: 10.1145/2818048.2820082].[GS Search]
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Vanessa Faria De Souza, Gabriela Trindade Perry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.