Rules for forming collaborative groups using automatic detection of personality traits

Authors

  • Taís Borges Ferreira Universidade Federal de Uberlândia
  • José Antonio Buiar Universidade Tecnológica Federal do Paraná
  • Márcia Aparecida Fernandes Universidade Federal de Uberlândia
  • Andrey Ricardo Pimentel Universidade Tecnológica Federal do Paraná
  • Luiz Eduardo S. Oliveira Universidade Tecnológica Federal do Paraná

DOI:

https://doi.org/10.5753/rbie.2020.28.0.273

Keywords:

Big Five Model, personality traits, group formation, collaborative learning

Abstract

Group formation is a crucial aspect of collaborative learning. Due to lack of interaction among students, this task becomes complex, and tools that determine groups for collaborative work are needed. Proposals for detecting personality traits and forming groups, based on the Big Five model, were developed. However, these works do not present rules for group formation. Thus, this work verifies the feasibility of automatically detecting personality traits through written texts and demonstrates the influence of these traits on group formation, identifying a set of rules for this purpose. In addition, this article is a joint effort of two research groups to identify suitable algorithms for detecting personality traits from texts. The grouping rules were extracted from the database of the groups built in order to help in the formation of new groups. Therefore, the contributions of this research were tools for automatic detection of personality traits from texts, identification of learning algorithms more suitable for classification of traits, database of groups and a set of rules based on traits and other parameters.

Downloads

Download data is not yet available.

References

Akhtar, R., Boustani, L., Tsivrikos, D., & Chamorro-Premuzi, T. (2015). The engageable personality: Personality and trait EI as predictors of work engagement. Personality and Individual Differences, 73, 44-49. doi: 10.1016/j.paid.2014.08.040 [GS Search]

Alavi, M. (1994). Computer-Mediated Collaborative Learning: An Empirical Evaluation. Journal MIS Quarterly, 18, 159-174. doi: 10.2307/249763 [GS Search]

Altanopoulou, P., & Tselios, N. (2015). How does personality affect wiki-mediated learning? Proceedings of International Conference on Interactive Mobile and Communication Technologies and Learning, (pp. 16-18). doi: 10.1109/IMCTL.2015.7359546 [GS Search]

Andrade, J. M. (7 de 2008). Evidências de Validade do Inventário dos Cinco Grandes Fatores de Personalidade para o Brasil. Ph.D. dissertation, Instituto de Psicologia - Universidade de Brası́lia. Fonte: [Link]

Balage Filho, P. P., Pardo, T. A., & Aluísio, S. M. (2013). An Evaluation of the Brazilian portuguese LIWC Dictionary for Sentiment Analysis. 9th Brazilian Synposium in Information and Human Language Technology, 215-219.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: analyzing text with the natural language toolkit. " O'Reilly Media, Inc.". [GS Search]

Bozionelos, G. (2017). The relationship of the big-five with workplace network resources: More quadratic than linear. Personality and Individual Differences, 104, 374-378. doi: 10.1016/j.paid.2016.08.036 [GS Search]

Buiar, J. A. (9 de 2018). Modelo computacional e sua implementação para identificação de perfil de personalidade baseado em textos educacionais. Ph.D. dissertation, Universidade Federal do Paraná. Fonte: [Link]

Carro, R. M., & Sanchez-Horreo, V. (2017). The effect of personality and learning styles on individual and collaborative learning: Obtaining criteria for adaptation. Global Engineering Education Conference (EDUCON), 2017 IEEE (pp. 1585-1590). IEEE. doi: 10.1109/EDUCON.2017.7943060 [GS Search]

Cavnar, W. B., & Trenkle, J. M. (1994). N-gram-based text categorization. Ann arbor mi, 48113, 161-175. [GS Search]

Costa, P. T., & Mac Crae, R. R. (1985). The NEO personality inventory. Psychological Assessment Resources Odessa, FL. [GS Search]

Costa, P. T., & Mac Crae, R. R. (1992). Neo personality inventory-revised (NEO PI-R). Psychological Assessment Resources Odessa, FL. [GS Search]

De Raad, B. (2000). The Big Five Personality Factors: The psycholexical approach to personality. Hogrefe & Huber Publishers. [GS Search]

Deary, I. J. (2009). The trait approach to personality. The Cambridge handbook of personality psychology, 1, 89-109. [GS Search]

Ekman, P. (1992). An argument for basic emotions. Cognition & emotion, 6, 169-200. doi: 10.1080/02699939208411068 [GS Search]

Everson, M. (2011). What can you gain by teaching online? eLearn Magazine, 2011, 3. doi: 10.1145/1925037.1925058 [GS Search]

Felder, R. M., & Silverman, L. K. (1 de 1988). Learning and teaching styles in engineering education. Engineering education, 78, 674-681. [GS Search]

Ferreira, T. B. (8 de 2018). Raciocínio Baseado em Casos para apoiar a formação de grupos baseada nos traços de personalidade do modelo Big Five. Universidade Federal de Uberlândia. Universidade Federal de Uberlândia. Fonte: [Link]

Frank, E., Hall, M. A., & Witten, I. H. (2016). The WEKA Workbench Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques (4 ed.). Morgan Kaufmann. [GS Search]

Goldberg, L. R. (1981). Language and individual differences: The search for universals in personality lexicons. Review of personality and social psychology, 2, 141-165. [GS Search]

Gosling, S. D., Rentfrow, P. J., & Swann Jr., W. B. (12 de 2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37, 504-528. doi: 10.1016/S0092-6566(03)00046-1 [GS Search]

John, O., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. Handbook of personality: Theory and research, 2, 102-138. [GS Search]

Kampman, O., J. Barezi, E., Bertero, D., & Fung, P. (7 de 2018). Investigating Audio, Video, and Text Fusion Methods for End-to-End Automatic Personality Prediction. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 606-611). Melbourne: Association for Computational Linguistics. [GS Search]

Kampman, O., Siddique, F. B., Yang, Y., & Fung, P. (2019). Adapting a virtual agent to user personality. Em Advanced Social Interaction with Agents (pp. 111-118). Springer. doi: 10.1007/978-3-319-92108-213 [GS Search]

Kassin, S. M. (2003). Essentials of psychology. Prentice Hall. [GS Search]

Kelsen, B. A., & Liang, H.-Y. (2018). Role of the Big Five Personality Traits and Motivation in Predicting Performance in Collaborative Presentations. Psychological reports. doi: 10.1177/0033294118795139 [GS Search]

Kop, R. (3 de 2011). The challenges to connectivist learning on open online networks: Learning experiences during a massive open online course. The International Review of Research in Open and Distance Learning, 12.doi: 10.19173/irrodl.v12i3.882 [GS Search]

Kumar, R., & Rose, C. P. (2014). Triggering Effective Social Support for Online Groups. ACM Transactions on Interactive Systems, 3, artigo 24 doi: 10.1145/2499672 [GS Search]

Lai, E. R. (2 de 2011). Collaboration: A Literature Review. Pearson. [GS Search]

Machado, A. A., Longhi, M. T., Nunes, M. A., & Pardo, T. A. (2015). Personalitatem Lexicon: Um Léxico em Português Brasileiro para Mineração de traços de Personalidade em Textos. Anais do XXVI Simpósio Brasileiro de Informática na Educação, (pp. 1122-1126). doi: 10.5753/cbie.sbie.2015.1122 [GS Search]

Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and Intelligent Systems for Collaboration Learning Support: A Review of the Field. IEEE Transactions on Learning Technologies, 4, 5-20. doi: 10.1109/TLT.2011.2 [GS Search]

Majumder, N., Poria, S., Gelbukh, A., & Cambria, E. (2017). Deep learning-based document modeling for personality detection from text. IEEE Intelligent Systems, 32, 74-79. doi: 10.1109/MIS.2017.23 [GS Search]

Manske, S., Hecking, T., Chounta, I. A., & Hoppe, H. U. (2015). Using differences to make a difference: a study on heterogeneity of learning groups. Proceedings of International Conference on Computer Supported Collaborative Learning, (pp. 182-189). [GS Search]

McAdams, D. P., & Olson, B. D. (2010). Personality development: Continuity and change over the life course. Annual review of psychology, 61, 517-542. doi: 10.1146/annurev.psych.093008.100507 [GS Search]

Michel, W., Shoda, Y., & Smith, R. E. (2004). Introduction to personality: Toward an integration. New York: John Wiley. [GS Search]

Munezero, M. D., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text. IEEE transactions on affective computing, 5, 101-111. doi: 10.1109/TAFFC.2014.2317187 [GS Search]

Nunes, M. A., Bezerra, J. S., Reinert, D., Moraes, D., Silva, E. P., & Pereira, A. J. (2010). Computação Afetiva e sua influência na personalização de Ambientes Educacionais: gerando equipes compatı́veis para uso em AVAs na EaD. Educação E Ciberespaço: Estudos, Propostas E Desafios. Aracaju: Virtus Editora, 1, 308-347. [GS Search]

Nunes, M. A., Moraes, D. B., & Reinert, D. (2010). Personality Inventory-PV 1.0 (Portuguese Version). Instituto Nacional de Propriedade Industrial.(software register INPI-12093-0). [GS Search]

Paim, A., Camati, R., & Enembreck, F. (2016). Inferência de Personalidade a partir de textos em Português utilizando Léxico Linguı́stico e Aprendizagem de Máquina. Anais do XIII Encontro Nacional de Inteligência Artificial e Computacional, (pp. 481-492). [GS Search]

Pennebaker, J. W., & King, L. A. (1999, 12). Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77, 1296-1312. doi: 10.1037/0022-3514.77.6.1296 [GS Search]

Pennebaker, J. W., Booth, R. J., Boyd, R. L., & Francis, M. E. (2015). Linguistic inquiry and word count: LIWC2015. Austin, TX, USA: Pennebaker Conglomerates. [GS Search]

Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates, 71, 2001. [GS Search]

Raento, M., Oulasvirta, A., & Eagle, N. (2009). Smartphones: An emerging tool for social scientists. Sociological methods & research, 37, 426-454. doi: 10.1177/0049124108330005 [GS Search]

Rammstedt, B., & John, O. P. (2 de 2007). Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41, 203-212 doi: 10.1016/j.jrp.2006.02.001 [GS Search]

Roberts, S. G., Wilson, R., Fedurek, P., & Dunbar, R. I. (2008). Individual differences and personal social network size and structure. Personality and Individual Differences, 44, 954-964 doi: 10.1016/j.paid.2007.10.033 [GS Search]

Rutherfoord, R. H. (2006). Using Personality Inventories to Form Teams for Class Projects – A Case Study. Proceedings of SIGITE '06 Proceedings of the 7th conference on Information Technology Education, (pp. 9-14). doi: 10.1145/1168812.1168817 [GS Search]

Sadeghi, H., & Kardan, A. A. (2014). Toward effective group formation in computer-supported collaborative learning. Interactive Learning Environments, 24, 1-14. doi: 10.1080/10494820.2013.851090 [GS Search]

Sadegui, H., & Kardan, A. (2015). A novel justice-based linear model for optimal learner group formation in computer-supported collaborative learning environments. Computers in Human Behavior, 48, 436-447. doi: 10.1016/j.chb.2015.020 [GS Search]

Sarkar, C., Bhatia, S., Agarwal, A., & Li, J. (2014). Feature analysis for computational personality recognition using youtube personality data set. Proceedings of the 2014 ACM multi media on workshop on computational personality recognition, (pp. 11-14). doi: 10.1145/2659522.2659528 [GS Search]

Scheffer, T. (2001). Finding Association Rules That Trade Support Optimally against Confidence. 5th European Conference on Principles of Data Mining and Knowledge Discovery (pp. 424-435). Berlin: Springer Berlin Heidelberg. doi: 10.1007/3-540-44794-635 [GS Search]

Silva, B., & Paraboni, I. (2018). Learning personality traits from Facebook text. IEEE Latin America Transactions, 16, 1256-1262. doi: 10.1109/TLA.2018.8362165 [GS Search]

Stadler, M., Herborn, K., Mustafić, M., & Greiff, S. (2019). Computer-Based Collaborative Problem Solving in PISA 2015 and the Role of Personality. Journal of Intelligence, 7. doi: 10.3390/jintelligence7030015 [GS Search]

Tandera, T., Suhartono, D., Wongso, R., & Prasetio, Y. L. (10 de 2017). Personality Prediction System from Facebook Users. Procedia Computer Science, 116, 604-611. doi: 10.1016/j.procs.2017.10.016 [GS Search]

Tausczik, Y. R., & Pennebaker, J. W. (2010). The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. Journal of Language and Social Psychology, 29, 24-54.doi: 10.1177/0261927X09351676 [GS Search]

Thurstone, L. L. (1938). Primary mental abilities. Psychometric monographs. [GS Search]

Tighe, E. P., Ureta, J. C., Pollo, B. A., Cheng, C. K., & Dios Bulos, R. (2016). Personality Trait Classification of Essays with the Application of Feature Reduction. SAAIP@ IJCAI, (pp. 22-28). [GS Search]

Vinciarelli, A., & Mohammadi, G. (2014). A survey of personality computing. IEEE Transactions on Affective Computing, 5, 273-291. doi: 10.1109/TAFFC.2014.2330816 [GS Search]

Wen, M., Yang, D., & Rose, C. (2014). Linguistic Reflections of Student Engagement in Massive Open Online Courses. Proceedings of the International Conference on Weblogs and Social Media. [GS Search]

Wu, W., & Chen, L. (2015). Implicit Acquisition of User Personality for Augmenting Movie Recommendations. Proceedings of International Conference on User Modeling, Adaptation and Personalization, (pp. 302-314). doi: 10.1007/978-3-319-20267-925 [GS Search]

Yu, J., & Markov, K. (2017). Deep Learning based Personality Recognition from Facebook Status Updates. The 8th International Conference on Awareness Science and Technology. doi: 10.1109/ICAwST.2017.8256484 [GS Search]

Published

2020-02-16

How to Cite

FERREIRA, T. B.; BUIAR, J. A.; FERNANDES, M. A.; PIMENTEL, A. R.; OLIVEIRA, L. E. S. Rules for forming collaborative groups using automatic detection of personality traits. Brazilian Journal of Computers in Education, [S. l.], v. 28, p. 273–296, 2020. DOI: 10.5753/rbie.2020.28.0.273. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/3939. Acesso em: 22 nov. 2024.

Issue

Section

Articles