Use of semantic enrichment for the Automatic Recommendation of video lectures in Moodle

Authors

  • Eduardo Barrére Universidade Federal de Juiz de Fora
  • Marluce Aparecida Vitor Universidade Federal de Juiz de Fora
  • Miguel Alvim de Almeida Universidade Federal de Juiz de Fora
  • Jairo Francisco Souza Universidade Federal de Juiz de Fora

DOI:

https://doi.org/10.5753/rbie.2020.28.0.319

Keywords:

Automatic Recommendation, Indexing System, Video Lectures

Abstract

Considering that videos are highly attractive to students and that it is possible to aggregate several information that identifies a video in a satisfactory way, a solution has been developed to carry out the automatic recommendation of educational videos to the teacher, who in turn can make them available to the students of a certain class, initially in the platform Moodle.The solution uses as a source a video previously processed, in order to obtain the main terms (indexing system) present in the audio of the video and the relationship (recommendation) of that video with the other of the repository. An experiment was carried out that confirmed the correctness and feasibility of use for the recommendation of educational videos in the Moodle platform.

Downloads

Download data is not yet available.

References

Abeysekera, L. & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: definition, rationale and a call for research. Journal Higher Education Research & Development , 34 (1), 1-14. [DOI: 10.1080/07294360.2014.934336A]

Allen, E., & Seaman, J. (2017). Digital Learning Compass: Distance Education Enrollment Report 2017 (Tech. Rep.). Retrieved from [GS Search].

Barrére, E., Vitor, M.A. & Almeida, M. A. (2017). Ampliação das Possibilidades de Gamificação no Moodle. Proceedings of XXVIII Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação - SBIE), 605-614. [DOI: 10.5753/cbie.sbie.2017.605]

Brame, C. J., & Perez, K. E. (2016). Effective educational videos: Principles and guidelines for maximizing student learning from video content. Proceedings of CBE—Life Sciences Education, 15. [DOI:10.1187/cbe.16-03-0125]

Brandão, W. C., Neves, D. E., & Ishitani, L. (2017). Automatic content recommendation and aggregation according to scorm. Informatics in Education – An International Journal, 16(2), 225-256. [GSSearch]

Cafolla, R. (2006). Project merlot: Bringing peer review to web-based educational resources. Journal of Technology and Teacher Education, 14, 313–323. [GSSearch]

Cechinel, S.-A.-S., C., & Sicilia, M. (2012). Automated quality assessment of learning objects inside repositories. Brazilian Journal of Computers in Education, 20(3), 43–59. [DOI:10.5753/rbie.2012.20.03.43].

Costa, E., Aguiar, J., & Magalhães, J. (2013). Sistemas de recomendação de recursos educacionais: conceitos, técnicas e aplicações. Proceedings of Jornada de Atualização em Informática na Educação, 1(1). [GSSearch]

Damnjanovic, J.-S., Vesna, & Mijatovic, I. (2015). Factors affecting the effectiveness and use of moodle: Students’ perception. Proceedings of Interactive Learning Environments, 23, 1049-4820. [DOI:10.1080/10494820.2013.789062].

Deldjoo. Y., Elahi, M., Cremonesi, P. Garzotto, F. Piazzolla, P. & Quadrana, M. (2016). Content-Based Video Recommendation System Based on Stylistic Visual Features. Journal on Data Semantics, 5(2), 99–113. [DOI:10.1007/s13740-016-0060-9].

Dias, L. L., Barbosa, J. S., Barrére, E. & Souza, J. F. de (2017). An Approach to Identify Similarity Among Educational Resources Using External Knowledge Bases. Brazilian Journal of Computers in Education, 25(2), 18-37. [DOI:10.5753/rbie.2017.25.02.18].

Ferreira, V. H., & Raabe, A. L. A. (2010). LORSys: Um sistema de recomendação de objetos de aprendizagem SCORM. Revista Novas Tecnologias na Educação, 8(2). [DOI:10.22456/1679-1916.15223].

Giannakos, M. N., Jaccheri, L. & Krogstie, J. (2016). Exploring the relationship between video lecture usage patterns and students attitudes. British Journal of Educational Technology, 47(6), 1259-1275. [DOI:10.1111/bjet.12313].

Halawa, H. E., Hamed, E. M. R., & Shehab, M. E. (2015). Personalized e-learning recommendation model based on psychological type and learning style models. Proceedings of 2015 IEEE seventh international conference on intelligent computing and information systems. 578-584. [DOI:10.1109/IntelCIS.2015.7397281].

Limongelli, C., Lombardi, M., Marani, A., Sciarrone, F. & Temperini, M. (2016). A recommendation module to help teachers build courses through the moodle learning management system. New Review of Hypermedia and Multimedia, 22, 58-82. [DOI:10.1080/13614568.2015.1077277].

Nascimento, P. do, Barreto, R., Primo, T., Gusmão, T. & Oliveira, E. (2017). Recomendação de objetos de aprendizagem baseada em modelos de estilos de aprendizagem: Uma revisão sistemática da literatura. Proceedings of Simpósio brasileiro de informática na educação, 213–222. [DOI:10.5753/cbie.sbie.2017.213].

Ochoa, X., & Duval, E. (2009). Quantitative analysis of learning object repositories. IEEE Transactions on Learning Technologies, 2(3), 226–238. [DOI:10.1109/TLT.2009.28].

Pirhonen, J., & Rasi, P. (2016). Student-generated instructional videos facilitate learning through positive emotions. Journal of Biological Education, 51(3), 215-227. [DOI:10.1080/00219266.2016.1200647].

Raimond, Y., & Lowis, C. (2012). Automated interlinking of speech radio archives. Proceedings of Workshop on Linked Data on the Web, 937. [GSSearch]

Ribeiro, F. A. A., Fonseca, L. C. C., & Freitas, M. S. (2013). Recomendando objetos de aprendizagem a partir das hashtags postadas no moodle. Proceedings of Simpósio brasileiro de informática na educação, 82-91. [DOI:10.5753/cbie.sbie.2013.82].

Silva, J. W. da, & Souza, C. de (2017). Repositórios de objetos de aprendizagem: características; classificações; limitações e tendências. Proceedings of Simpósio brasileiro de informática na educação, 61–70. [DOI:10.5753/cbie.sbie.2017.61].

Syed, T. A., Palade, V., Iqbal, R. & Nair, S. S. K. (2017). A personalized learning recommendation system architecture for learning management system. Proceedings of the 9th international joint conference on knowledge discovery. [DOI:10.5220/0006513202750282].

Tibaná-Herrera, G., Fernández-Bajón, M. T. & Moya-Anegón, F. de (2018). Global analysis of the e-learning scientific domain: a declining category? Scientometrics - An International Journal for all Quantitative Aspects of the Science of Science, Communication in Science and Science Policy, 114(2), 675-685. [DOI:10.1007/s11192-017-2592-7].

Published

2020-05-31

How to Cite

BARRÉRE, E.; VITOR, M. A.; ALMEIDA, M. A. de; SOUZA, J. F. Use of semantic enrichment for the Automatic Recommendation of video lectures in Moodle. Brazilian Journal of Computers in Education, [S. l.], v. 28, p. 319–334, 2020. DOI: 10.5753/rbie.2020.28.0.319. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/3940. Acesso em: 22 nov. 2024.

Issue

Section

Articles

Most read articles by the same author(s)