Mineração de Dados Educacionais na Predição da Evasão Estudantil: Tendências, Oportunidades e Desafios

Authors

  • Miriam Pizzatto Colpo Programa de Pós-Graduação em Computação Universidade Federal de Pelotas (UFPel) Diretoria de Tecnologia da Informação Instituto Federal Farroupilha (IFFar) https://orcid.org/0000-0002-6477-3227
  • Tiago Thompsen Primo Programa de Pós-Graduação em Computação Universidade Federal de Pelotas (UFPel) https://orcid.org/0000-0003-3870-097X
  • Marilton Sanchotene de Aguiar Programa de Pós-Graduação em Computação Universidade Federal de Pelotas (UFPel) https://orcid.org/0000-0002-5247-6022
  • Cristian Cechinel Programa de Pós-Graduação em Computação Universidade Federal de Pelotas (UFPel) Centro de Ciências, Tecnologias e Saúde Universidade Federal de Santa Catarina (UFSC) https://orcid.org/0000-0001-6384-409X

DOI:

https://doi.org/10.5753/rbie.2024.3559

Keywords:

Evasão Estudantil, Predição de Evasão, Mineração de Dados Educacionais, Revisão Sistemática da Literatura

Abstract

Atualmente, enfrentamos prejuízos acadêmicos, sociais e econômicos associados à evasão estudantil. Vários estudos têm aplicado técnicas de mineração de dados a conjuntos de dados educacionais para entender os perfis de evasão e reconhecer alunos em risco. Para identificar características contextuais (níveis, modalidades e sistemas educacionais), técnicas (tarefas, categorias de algoritmos e ferramentas) e de dados (tipos, cobertura e volume) relacionadas a esses trabalhos, realizou-se uma revisão sistemática da literatura, considerando a evasão institucional e de curso. A partir de repositórios reconhecidos internacionalmente, artigos foram selecionados e demonstraram, entre outras características, uma maior exploração de dados acadêmicos, demográficos e econômicos de estudantes de graduação, a partir de técnicas de classificação de comitês de árvores de decisão. Além de não ter sido identificado nenhum estudo de países subdesenvolvidos entre os selecionados, foram observadas carências na aplicação dos modelos preditivos e na disponibilização de suas previsões aos gestores acadêmicos, o que sugere uma subutilização dos esforços e do potencial da maioria desses estudos na prática educacional.

Downloads

Não há dados estatísticos.

Referências

Agrusti, F., Bonavolonta, G., & Mezzini, M. (2019). University dropout prediction through educational data mining techniques: A systematic review. Journal of e-Learning and Knowledge Society, 15(3), 161–182. https://doi.org/10.20368/1971-8829/1135017 [GS Search].

Agrusti, F., Mezzini, M., & Bonavolonta, G. (2020). Deep learning approach for predicting university dropout: a case study at Roma Tre University. Journal of e-Learning and Knowledge Society, 16(1, SI), 44–54. https://doi.org/10.20368/1971-8829/1135192 [GS Search].

Aguirre, C. E., & Pérez, J. C. (2020). Predictive data analysis techniques applied to dropping out of university studies. 2020 XLVI Latin American Computing Conference (CLEI), 512–521. https://doi.org/10.1109/CLEI52000.2020.00066 [GS Search].

Alturki, S., Cohausz, L., & Stuckenschmidt, H. (2022). Predicting master’s students’ academic performance: An empirical study in germany. Smart Learning Environments, 9(1). https://doi.org/10.1186/s40561-022-00220-y [GS Search].

Baker, R., Isotani, S., & Carvalho, A. (2011). Mineração de dados educacionais: Oportunidades para o brasil. Revista Brasileira de Informática na Educação, 19(02), 03–13. https://doi.org/10.5753/rbie.2011.19.02.03 [GS Search].

Baranyi, M., Nagy, M., & Molontay, R. (2020). Interpretable deep learning for university dropout prediction. Proceedings of the 21st Annual Conference on Information Technology Education, 13–19. https://doi.org/10.1145/3368308.3415382 [GS Search].

Barros, T. M., Souza Neto, P. A., Silva, I., & Guedes, L. A. (2019). Predictive Models for Imbalanced Data: A School Dropout Perspective. Education Sciences, 9(4), 275, 1–17. https://doi.org/10.3390/educsci9040275 [GS Search].

Bassetti, E., Conti, A., Panizzi, E., & Tolomei, G. (2022). ISIDE: Proactively Assist University Students at Risk of Dropout. 2022 IEEE International Conference on Big Data (Big Data), 1776–1783. https://doi.org/10.1109/BigData55660.2022.10020920 [GS Search].

Beaulac, C., & Rosenthal, J. S. (2019). Predicting University Students’ Academic Success and Major Using Random Forests. Research in Higher Education, 60(7), 1048–1064. https://doi.org/10.1007/s11162-019-09546-y [GS Search].

Berka, P., & Marek, L. (2021). Bachelor’s degree student dropouts: Who tend to stay and who tend to leave?. Studies in Educational Evaluation, 70, 100999. https://doi.org/10.1016/j.stueduc.2021.100999 [GS Search].

Bitencourt, W. A., Silva, D. M., & do Carmo Xavier, G. (2022). Pode a inteligência artificial apoiar ações contra evasão escolar universitária. Ensaio, 30(116), 669–694. https://doi.org/10.1590/S0104-403620220003002854 [GS Search].

Böttcher, A., Thurner, V., Häfner, T., & Hertle, J. (2021). A data science-based approach for identifying counseling needs in first-year students. 2021 IEEE Global Engineering Education Conference (EDUCON), 420–429. https://doi.org/10.1109/EDUCON46332.2021.9454042 [GS Search].

Brasil. (1996). Diplomação, retenção e evasão nos cursos de graduação em instituições de ensino superior públicas (tech. rep.) (GS SEARCH). Ministério da Educação, Comissão Especial de Estudos sobre a Evasão nas Universidades Públicas Brasileiras: ANDIFES; ABRUEM; SESu/MEC. Brasília, DF. [Link]

Chen, Y., Johri, A., & Rangwala, H. (2018). Running out of stem: A comparative study across stem majors of college students at-risk of dropping out early. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, 270–279. https://doi.org/10.1145/3170358.3170410 [GS Search].

Chung, J. Y., & Lee, S. (2019). Dropout early warning systems for high school students using machine learning. Children and Youth Services Review, 96, 346–353. https://doi.org/10.1016/j.childyouth.2018.11.030 [GS Search].

Colpo, M. P., Primo, T. T., & de Aguiar, M. S. (2021). Predição da evasão estudantil: Uma análise comparativa de diferentes representações de treino na aprendizagem de modelos genéricos. Anais do XXXII Simpósio Brasileiro de Informática na Educação, 873–884. https://doi.org/10.5753/sbie.2021.218517 [GS Search].

Colpo, M. P., Primo, T. T., Pernas, A. M., & Cechinel, C. (2020). Mineração de dados educacionais na previsão de evasão: Uma RSL sob a perspectiva do congresso brasileiro de informática na educação. Anais do XXXI Simpósio Brasileiro de Informática na Educação, 1102–1111. https://doi.org/10.5753/cbie.sbie.2020.1102 [GS Search].

Costa, A. G., Mattos, J. C. B., Primo, T. T., Cechinel, C., & Muñoz, R. (2021). Model for prediction of student dropout in a computer science course. 2021 XVI Latin American Conference on Learning Technologies (LACLO), 137–143. https://doi.org/10.1109/LACLO54177.2021.00020 [GS Search].

Crespo, C. (2020). Two become one: Improving the targeting of conditional cash transfers with a predictive model of school dropout. Economia-Journal of the Latin American and Caribbean Economic Association, 21(1), 1–45. https://doi.org/10.1353/eco.2020.0011 [GS Search].

da Silva, P. M., Lima, M. N. C. A., Soares, W. L., Silva, I. R. R., de A. Fagundes, R. A., & de Souza, F. F. (2019). Ensemble regression models applied to dropout in higher education. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), 120–125. https://doi.org/10.1109/BRACIS.2019.00030 [GS Search].

de Assis, B. d. S., Ogasawara, E., Barbastefano, R., & Carvalho, D. (2022). Frequent pattern mining augmented by social network parameters for measuring graduation and dropout time factors: A case study on a production engineering course. Spcio-Economic Planning Sciences, 81. https://doi.org/10.1016/j.seps.2021.101200 [GS Search].

Deho, O. B., Zhan, C., Li, J., Liu, J., Liu, L., & Le, T. D. (2022). How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics?. British Journal of Education Technology, 53(4), 822–843. https://doi.org/10.1111/bjet.13217 [GS Search].

Del Bonifro, F., Gabbrielli, M., Lisanti, G., & Zingaro, S. (2020). Student dropout prediction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12163 LNAI, 129–140. https://doi.org/10.1007/978-3-030-52237-7_11 [GS Search].

Demeter, E., Dorodchi, M., Al-Hossami, E., Benedict, A., Walker, L. S., & Smail, J. (2022). Predicting first-time-in-college students’ degree completion outcomes. Higher Education, 84(3), 589–609. https://doi.org/10.1007/s10734-021-00790-9 [GS Search].

de Oliveira, C. F., Sobral, S. R., Ferreira, M. J., & Moreira, F. (2021). How does learning analytics contribute to prevent students’ dropout in higher education: A systematic literature review. Big Data and Cognitive Computing, 5(4). https://doi.org/10.3390/bdcc5040064 [GS Search].

Fernández-García, A. J., Preciado, J. C., Melchor, F., Rodriguez-Echeverria, R., Conejero, J. M., & Sánchez-Figueroa, F. (2021). A real-life machine learning experience for predicting university dropout at different stages using academic data. IEEE Access, 9, 133076–133090. https://doi.org/10.1109/ACCESS.2021.3115851 [GS Search].

Flores, V., Heras, S., & Julian, V. (2022). Comparison of predictive models with balanced classes using the smote method for the forecast of student dropout in higher education. Electronics, 11(3). https://doi.org/10.3390/electronics11030457 [GS Search].

Fontana, L., Masci, C., Ieva, F., & Paganoni, A. M. (2021). Performing learning analytics via generalised mixed-effects trees. Data, 6(7). https://doi.org/10.3390/data6070074 [GS Search].

Freitas, F. A. d. S., Vasconcelos, F. F. X., Peixoto, S. A., Hassan, M. M., Dewan, M. A. A., de Albuquerque, V. H. C., & Reboucas Filho, P. P. (2020). IoT System for School Dropout Prediction Using Machine Learning Techniques Based on Socioeconomic Data. Electronics, 9(10), 1613, 1–14. https://doi.org/10.3390/electronics9101613 [GS Search].

Gamao, A., & Gerardo, B. (2019). Prediction-based model for student dropouts using modified mutated firefly algorithm. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 3461–3469. https://doi.org/10.30534/ijatcse/2019/122862019 [GS Search].

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd). Morgan Kaufmann Publishers. [GS Search].

Hannaford, L., Cheng, X., & Kunes-Connell, M. (2021). Predicting nursing baccalaureate program graduates using machine learning models: A quantitative research study. Nurse Education Today, 99, 104784. https://doi.org/10.1016/j.nedt.2021.104784 [GS Search].

Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1–11. https://doi.org/10.1016/j.dss.2017.05.003 [GS Search].

Hutagaol, N., & Suharjito. (2019). Predictive modelling of student dropout using ensemble classifier method in higher education. Advances in Science, Technology and Engineering Systems, 4(4), 206–211. https://doi.org/10.25046/aj040425 [GS Search].

Iam-On, N., & Boongoen, T. (2017a). Generating descriptive model for student dropout: a review of clustering approach. Human-Centric Computing and Information Sciences, 7, 1, 1–24. https://doi.org/10.1186/s13673-016-0083-0 [GS Search].

Iam-On, N., & Boongoen, T. (2017b). Improved student dropout prediction in Thai University using ensemble of mixed-type data clusterings. International Journal of Machine Learning and Cybernetics, 8(2), 497–510. https://doi.org/10.1007/s13042-015-0341-x [GS Search].

Kang, K., & Wang, S. (2018). Analyze and predict student dropout from online programs. Proceedings of the 2nd International Conference on Compute and Data Analysis, 6–12. https://doi.org/10.1145/3193077.3193090 [GS Search].

Karimi-Haghighi, M., Castillo, C., & Hernandez-Leo, D. (2022). A causal inference study on the effects of first year workload on the dropout rate of undergraduates. In M. Rodrigo, N. Matsuda, A. Cristea, & V. Dimitrova (Eds.), Artificial intelligence in education, pt i (pp. 15–27, Vol. 13355). https://doi.org/10.1007/978-3-031-11644-5_2 [GS Search].

Kiss, B., Nagy, M., Molontay, R., & Csabay, B. (2019). Predicting dropout using high school and first-semester academic achievement measures. 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA), 383–389. https://doi.org/10.1109/ICETA48886.2019.9040158 [GS Search].

Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering (tech. rep. No. EBSE-2007-01). School of Computer Science and Mathematics, Keele University. Keele, UK. [Link]. [GS Search].

Kurniawati, G., & Maulidevi, N. U. (2022). Multivariate sequential modelling for student performance and graduation prediction. 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 293–298. https://doi.org/10.1109/ICITACEE55701.2022.9923971 [GS Search].

Kuzilek, J., Zdrahal, Z., & Fuglik, V. (2021). Student success prediction using student exam behaviour. Future Generation Computer Systems - The International Journal of Escience, 125, 661–671. https://doi.org/10.1016/j.future.2021.07.009 [GS Search].

Lee, S., & Chung, J. Y. (2019). The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout Prediction. Applied Sciences-Basel, 9(15), 3093, 1–14. https://doi.org/10.3390/app9153093 [GS Search].

Lottering, R., Hans, R., & Lall, M. (2020). A model for the identification of students at risk of dropout at a university of technology. 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1–8. https://doi.org/10.1109/icABCD49160.2020.9183874 [GS Search].

Marques, L. T., Castro, A. F. D., Marques, B. T., Silva, J. C. P., & Queiroz, P. G. G. (2019). Mineração de dados auxiliando na descoberta das causas da evasão escolar: Um mapeamento sistemático da literatura. Novas Tecnologias na Educação, 17(3), 194–203. https://doi.org/10.22456/1679-1916.99470 [GS Search].

Masood, S. W., & Begum, S. A. (2022). Comparison of resampling techniques for imbalanced datasets in student dropout prediction. 2022 IEEE Silchar Subsection Conference (SILCON), 1–7. https://doi.org/10.1109/SILCON55242.2022.10028915 [GS Search].

Mduma, N., Kalegele, K., & Machuve, D. (2019a). A survey of machine learning approaches and techniques for student dropout prediction. Data Science Journal, 18:14, 1–10. https://doi.org/10.5334/dsj-2019-014 [GS Search].

Mduma, N., Kalegele, K., & Machuve, D. (2019b). An ensemble predictive model based prototype for student drop-out in secondary schools. Journal of Information Systems Engineering and Management, 4(3). https://doi.org/10.29333/jisem/5893 [GS Search].

Mduma, N., & Machuve, D. (2021). Machine learning model for predicting student dropout: A case of tanzania, kenya and uganda. 2021 IEEE AFRICON, 1–6. https://doi.org/10.1109/AFRICON51333.2021.9570956 [GS Search].

Nagy, M., & Molontay, R. (2018). Predicting dropout in higher education based on secondary school performance. 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), 000389–000394. https://doi.org/10.1109/INES.2018.8523888 [GS Search].

Naseem, M., Chaudhary, K., & Sharma, B. (2022). Predicting freshmen attrition in computing science using data mining. Education and Information Technologies, 27(7), 9587–9617. https://doi.org/10.1007/s10639-022-11018-3 [GS Search].

Nuanmeesri, S., Poomhiran, L., Chopvitayakun, S., & Kadmateekarun, P. (2022). Improving dropout forecasting during the covid-19 pandemic through feature selection and multilayer perceptron neural network. International Journal of Information and Education Technology, 12(9), 851–857. https://doi.org/10.18178/ijiet.2022.12.9.1693 [GS Search].

Opazo, D., Moreno, S., Alvarez-Miranda, E., & Pereira, J. (2021). Analysis of first-year university student dropout through machine learning models: A comparison between universities. Mathematics, 9(20). https://doi.org/10.3390/math9202599 [GS Search].

Oreshin, S., Filchenkov, A., Petrusha, P., Krasheninnikov, E., Panfilov, A., Glukhov, I., Kaliberda, Y., Masalskiy, D., Serdyukov, A., Kazakovtsev, V., Khlopotov, M., Podolenchuk, T., Smetannikov, I., & Kozlova, D. (2020). Implementing a machine learning approach to predicting students academic outcomes. 2020 1st International Conference on Control, Robotics and Intelligent System, 78–83. https://doi.org/10.1145/3437802.3437816 [GS Search].

Orooji, M., & Chen, J. (2019). Predicting louisiana public high school dropout through imbalanced learning techniques. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 456–461. https://doi.org/10.1109/ICMLA.2019.00085 [GS Search].

Ortigosa, A., Carro, R. M., Bravo-Agapito, J., Lizcano, D., Alcolea, J. J., & Blanco, O. (2019). From lab to production lessons learnt and real-life challenges of an early student-dropout prevention system. IEEE Transactions on Learning Technologies, 12(2), 264–277. https://doi.org/10.1109/TLT.2019.2911608 [GS Search].

Pachas, D. A. G., Garcia-Zanabria, G., Cuadros-Vargas, A. J., Camara-Chavez, G., Poco, J., & Gomez-Nieto, E. (2021). A comparative study of who and when prediction approaches for early identification of university students at dropout risk. 2021 XLVII Latin American Computing Conference (CLEI), 1–10. https://doi.org/10.1109/CLEI53233.2021.9640119 [GS Search].

Palacios, C. A., Reyes-Suarez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge Discovery for Higher Education Student Retention Based on Data Mining: Machine Learning Algorithms and Case Study in Chile. Entropy, 23(4), 485, 1–23. https://doi.org/10.3390/e23040485 [GS Search].

Park, H. S., & Yoo, S. J. (2021). Early dropout prediction in online learning of university using machine learning. International Journal on Informatics Visualization, 5(4), 347–353. https://doi.org/10.30630/JOIV.5.4.732 [GS Search].

Perchinunno, P., Bilancia, M., & Vitale, D. (2021). A statistical analysis of factors affecting higher education dropouts. Spcial Indicators Research, 156(2-3, SI), 341–362. https://doi.org/10.1007/s11205-019-02249-y [GS Search].

Perez, B., Castellanos, C., & Correal, D. (2018). Predicting student drop-out rates using data mining techniques: A case study. In A. Orjuela-Canon, J. Figueroa-Garcia, & J. Arias-Londono (Eds.), Applications of computational intelligence, ColCACI 2018 (pp. 111–125, Vol. 833). https://doi.org/10.1007/978-3-030-03023-0_10 [GS Search].

Pontili, R., Staduto, J., & Henrique, J. (2018). Abandono e atraso escolar e sua relação com indicadores socioeconômicos: Uma análise para a região sul do brasil. Gestão & Regionalidade, 34(101), 4–22. https://doi.org/10.13037/gr.vol34n101.4173 [GS Search].

Prada, M. Á., Domínguez, M., Vicario, J. L., Alves, P. A. V., Barbu, M., Podpora, M., Spagnolini, U., Pereira, M. J. V., & Vilanova, R. (2020). Educational data mining for tutoring support in higher education: A web-based tool case study in engineering degrees. IEEE Access, 8, 212818–212836. https://doi.org/10.1109/ACCESS.2020.3040858 [GS Search].

Queiroga, E. M., Batista Machado, M. F., Paragarino, V. R., Primo, T. T., & Cechinel, C. (2022). Early prediction of at-risk students in secondary education: A countrywide k12 learning analytics initiative in uruguay. Information, 13(9). https://doi.org/10.3390/info13090401 [GS Search].

Queiroga, E. M., Lopes, J. L., Kappel, K., Aguiar, M., Araujo, R. M., Munoz, R., Villarroel, R., & Cechinel, C. (2020). A Learning Analytics Approach to Identify Students at Risk of Dropout: A Case Study with a Technical Distance Education Course. Applied Sciences-Basel, 10(11), 3998. https://doi.org/10.3390/app10113998 [GS Search].

Raschka, S., & Mirjalili, V. (2017). Python machine learning: Machine learning and deep learning with python, scikit-learn, and tensorflow (2nd). Packt Publishing. [GS Search].

Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355 [GS Search].

Rondado de Sousa, L., Oliveira de Carvalho, V., Penteado, B. E., & Affonso, F. J. A systematic mapping on the use of data mining for the face-to-face school dropout problem. In: In Proceedings of the 13th international conference on computer supported education - volume 1: Csedu. GS SEARCH. INSTICC. SciTePress, 2021, 36–47. ISBN: 978-989-758-502-9. https://doi.org/10.5220/0010476300360047 [GS Search].

Rovira, S., Puertas, E., & Igual, L. (2017). Data-driven system to predict academic grades and dropout. PLOS ONE, 12(2), e0171207. https://doi.org/10.1371/journal.pone.0171207 [GS Search].

Santos, G., Belloze, K., Tarrataca, L., Haddad, D., Bordignon, A., & Brandao, D. (2020). Evolvedtree: Analyzing student dropout in universities. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 173–178. https://doi.org/10.1109/IWSSIP48289.2020.9145203 [GS Search].

Santos, J. R., & Zaboroski, E. (2020). Ensino remoto e pandemia de COVID-19: Desafios e oportunidades de alunos e professores. Interacções, 16(55), 41–57. https://doi.org/10.25755/int.20865 [GS Search].

Segura, M., Mello, J., & Hernandez, A. (2022). Machine learning prediction of university student dropout: Does preference play a key role?. Mathematics, 10(18). https://doi.org/10.3390/math10183359 [GS Search].

Shiau, Y. (2020). University dropout prevention through the application of big data. Proceedings of the 2020 3rd International Conference on Information Management and Management Science, 1–7. https://doi.org/10.1145/3416028.3416029 [GS Search].

Shilbayeh, S., & Abonamah, A. (2021). Predicting student enrolments and attrition patterns in higher educational institutions using machine learning. International Arab Journal of Information Technology, 18(4), 562–567. https://doi.org/10.34028/18/4/8 [GS Search].

Silva, G. P. d. (2013). Análise de evasão no ensino superior: Uma proposta de diagnóstico de seus determinantes. Avaliação: Revista da Avaliação da Educação Superior (Campinas), 18(2), 311–333. https://doi.org/10.1590/S1414-40772013000200005 [GS Search].

Silva Filho, R. L. L., Motejunas, P. R., Hipolito, O., & Lobo, M. B. C. M. (2007). A evasão no ensino superior brasileiro. Cadernos de Pesquisa, 37(132), 641–659. https://doi.org/10.1590/S0100-15742007000300007 [GS Search].

Solis, M., Moreira, T., Gonzalez, R., Fernandez, T., & Hernandez, M. (2018). Perspectives to predict dropout in university students with machine learning. 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), 1–6. https://doi.org/10.1109/IWOBI.2018.8464191 [GS Search].

Sorensen, L. C. (2019). "Big Data" in Educational Administration: An Application for Predicting School Dropout Risk. Educational Administration Quarterly, 55(3), 404–446. https://doi.org/10.1177/0013161X18799439 [GS Search].

Tsai, S.-C., Chen, C.-H., Shiao, Y.-T., Ciou, J.-S., & Wu, T.-N. (2020). Precision education with statistical learning and deep learning: a case study in Taiwan. International Journal of Educational Technology in Higher Education, 17(1), 12. https://doi.org/10.1186/s41239-020-00186-2 [GS Search].

Urbina-Najera, A. B., & Mendez-Ortega, L. A. (2022). Predictive model for taking decision to prevent university dropout. International Journal of Interactive Multimedia and Artificial Intelligence, 7(4), 205–213. https://doi.org/10.9781/ijimai.2022.01.006 [GS Search].

Vasquez Verdugo, J., Gitiaux, X., Ortega, C., & Rangwala, H. (2022). Faired: A systematic fairness analysis approach applied in a higher educational context. LAK22: 12th International Learning Analytics and Knowledge Conference, 271–281. https://doi.org/10.1145/3506860.3506902 [GS Search].

Vega, H., Sanez, E., De La Cruz, P., Moquillaza, S., & Pretell, J. (2022). Intelligent system to predict university students dropout. International journal of online and biomedical engineering, 18(7), 27–43. https://doi.org/10.3991/ijoe.v18i07.30195 [GS Search].

Villegas-Ch, W., Palacios-Pacheco, X., & Lujan-Mora, S. (2020). A business intelligence framework for analyzing educational data. Sustainability, 12(14). https://doi.org/10.3390/su12145745 [GS Search].

Viloria, A., Garcia Padilla, J., Vargas-Mercado, C., Hernandez-Palma, H., Orellano Llinas, N., & Arrozola David, M. (2019). Integration of data technology for analyzing university dropout. In E. Shakshuki, A. Yasar, & H. Malik (Eds.), 16th International Conference on Mobile Systems and Pervasive Computing (MOBISPC 2019), 14th International Conference on Future Networks and Communications (FNC-2019), 9TH International Conference on Sustainable Energy Information Technology (pp. 569–574, Vol. 155). https://doi.org/10.1016/j.procs.2019.08.079 [GS Search].

Xu, Y., & Wilson, K. (2021). Early alert systems during a pandemic: A simulation study on the impact of concept drift. LAK21: 11th International Learning Analytics and Knowledge Conference, 504–510. https://doi.org/10.1145/3448139.3448190 [GS Search].

Yang, H., Olson, T. W., & Puder, A. (2021). Analyzing computer science students’ performance data to identify impactful curricular changes. 2021 IEEE Frontiers in Education Conference (FIE), 1–9. https://doi.org/10.1109/FIE49875.2021.9637474 [GS Search].

Yoo, J. S., Woo, Y.-S., & Park, S. J. (2017). Mining course trajectories of successful and failure students: A case study. 2017 IEEE International Conference on Big Knowledge (ICBK), 270–275. https://doi.org/10.1109/ICBK.2017.55 [GS Search].

Yu, R., Lee, H., & Kizilcec, R. F. (2021). Should college dropout prediction models include protected attributes?. Proceedings of the Eighth ACM Conference on Learning @ Scale, 91–100. https://doi.org/10.1145/3430895.3460139 [GS Search].

Arquivos adicionais

Published

2024-05-20

Como Citar

COLPO, M. P.; THOMPSEN PRIMO, T.; AGUIAR, M. S. de; CECHINEL, C. Mineração de Dados Educacionais na Predição da Evasão Estudantil: Tendências, Oportunidades e Desafios. Revista Brasileira de Informática na Educação, [S. l.], v. 32, p. 220–256, 2024. DOI: 10.5753/rbie.2024.3559. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/3559. Acesso em: 5 dez. 2024.

Issue

Section

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)