Contribuições de um Plugin do tipo Report para a Identificação do Risco de Evasão no AVA Moodle com base em Visualização de Dados
DOI:
https://doi.org/10.5753/rbie.2020.28.0.01Keywords:
Evasão, Moodle, Learning Analytics, Visualização de dados, IndicadoresAbstract
Este trabalho pertence ao campo de pesquisa educacional, conhecido como Learning Analytics, e tem como objetivo analisar a contribuição de indicadores sociais, cognitivos e comportamentais da aprendizagem dos alunos, criados com base em dados do Ava Moodle, para auxiliar professores, tutores e coordenadores de cursos on-line na identificação de alunos em risco de evasão. Os AVAs geram relatórios e logs sobre as atividades dos alunos, todavia eles geralmente são de difícil compreensão para tutores, professores e coordenadores de curso, o que dificulta a identificação de problemas de evasão, entre outros, de forma mais objetiva. Diante disso, acredita-se que a utilização de uma solução que colete dados de indicadores referentes aos acessos, às interações e às notas dos alunos em um AVA, apresentando-os por meio de infográficos, pode ajudar aos agentes acima citados a identificar alunos que possam estar em vias de abandonar um curso a distância. Para tanto, foi concebido e implementado um plugin do tipo report (relatório) para o AVA Moodle, contendo funcionalidades de filtros, envio de notificações e gráficos interativos, gerados pela ferramenta Google Charts. Para avaliar esse plugin, foram feitas análises qualitativas através da aplicação dessa ferramenta com o grupo focal formado desses profissionais de cursos a distância. Concluiu-se, então, que o plugin proporciona uma melhoria na percepção desse grupo em relação aos dados dos alunos que estão em risco de evasão, em comparação com os logs e relatórios nativos do Moodle.
Downloads
Referências
Alqurashi, E. (2018). Predicting student satisfaction and perceived learning within online learning environments. Distance Education, 1-16. [DOI:10.1080/01587919.2018.1553562].[GS Search]
Amaral, J. N. (2011). About computing science research methodology. [GS Search]
Benta, D., Bologa, G., & Dzitac, I. (2014). E-learning platforms in higher education. Case study. Procedia Computer Science, 31, 1170-1176. [DOI:10.1016/j.procs.2014.05.373].[GS Search]
Carvalho, E. S., & Marcos, A. F. (2009). Visualização de informação. Centro de Computação Gráfica (CCG).[GS Search]
Cohen, A. (2017). Analysis of student activity in web-supported courses as a tool for predicting dropout. Educational Technology Research and Development, 65(5), 1285-1304. [DOI:10.1007/s11423-017-9524-3].[GS Search]
Corrin, L., Kennedy, G., De Barba, P., Bakharia, A., Lockyer, L., Gasevic, D., & Copeland, S. (2015). Loop: A learning analytics tool to provide teachers with useful data visualisations.[GS Search]
Costa, R. L. D., & Santos, J. C. D. (2017). Dropout in distance technical courses. Educar em Revista, (66), 241-256.[DOI:10.1590/0104-4060.50700].[GS Search]
Coutinho, E., Bezerra, J., Bezerra, C. I. M., & Moreira, L. O. (2018, October). Uma Análise da Evasão em Cursos de Graduação Apoiado por Métricas e Visualização de Dados. In: Anais do Workshop de Informática na Escola (Vol. 24, No. 1, p. 31). [DOI:10.5753/cbie.wie.2018.31].[GS Search]
Dobashi, K. (2016). Development and trial of excel macros for time series cross section monitoring of student engagement: analyzing students’ page views of course materials. Procedia Computer Science, 96, 1086-1095. [DOI:10.1016/j.procs.2016.08.133].[GS Search]
Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Journal of Educational Technology & Society, 15(3). [GS Search]
Einhardt, L., Tavares, T. A., & Cechinel, C. (2016, October). Moodle analytics dashboard: A learning analytics tool to visualize users interactions in Moodle. In Learning Objects and Technology (LACLO), Latin American Conference on (pp. 1-6). IEEE. [DOI:10.1109/LACLO.2016.7751805].[GS Search]
Fredricks, J., McColskey, W., Meli, J., Mordica, J., Montrosse, B., & Mooney, K. (2011). Measuring Student Engagement in Upper Elementary through High School: A Description of 21 Instruments. Issues & Answers. REL 2011-No. 098. Regional Educational Laboratory Southeast. [GS Search]
Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. [DOI:10.1007/s11528-014-0822-x].[GS Search]
Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60-67. [DOI:10.1016/j.chb.2014.11.001].[GS Search]
Google. Charts. Disponível em: https://developers.google.com/chart/.
Handelsman, M. M., Briggs, W. L., Sullivan, N., & Towler, A. (2005). A measure of college student course engagement. The Journal of Educational Research, 98(3), 184-192. [DOI:10.3200/JOER.98.3.184-192].[GS Search]
Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36-53. [DOI:10.1016/j.compedu.2015.09.005].[GS Search]
Johnson, G. M., & Johnson, J. A. (2010). Dimensions of online behavior: implications for engineering E-learning. In Technological developments in education and automation (pp. 61-66). Springer, Dordrecht. [DOI:10.1007/978-90-481-3656-8_13].[GS Search]
Kent, C., Laslo, E., & Rafaeli, S. (2016). Interactivity in online discussions and learning outcomes. Computers & Education, 97, 116-128. [DOI:10.1016/j.compedu.2016.03.002].[GS Search]
Kostopoulos, G., Kotsiantis, S., & Pintelas, P. (2015, October). Estimating student dropout in distance higher education using semi-supervised techniques. In: Proceedings of the 19th Panhellenic Conference on Informatics (pp. 38-43). ACM. [DOI:10.1145/2801948.2802013].[GS Search]
Lucena, K. T., Silva, J., & Oliveira, E. (2015, October). WebMonitor: uma ferramenta para monitoramento e acompanhamento de cursos em um AVA. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 26, No. 1, p. 249). [DOI:10.5753/cbie.sbie.2015.249].[GS Search]
Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers & Education, 53(3), 950-965. [DOI:10.1016/j.compedu.2009.05.010].[GS Search]
Lyra, K., Reis, R., Cruz, W. & Isotani, S. (2019). Um framework de classificação de complexidade para infográficos. Revista Brasileira de Informática na Educação, V(27), N.1. [DOI:10.5753/rbie.2019.27.01.196].[GS Search]
Mazza, R., & Dimitrova, V. (2007). CourseVis: A graphical student monitoring tool for supporting instructors in web-based distance courses. International Journal of Human-Computer Studies, 65(2), 125-139. [DOI:10.1016/j.ijhcs.2006.08.008].[GS Search]
Medeiros, F., Gomes, A. S., Amorim, R., & Medeiros, G. (2013, July). Architecture for Social Interactions Monitoring in Collaborative Learning Environments as a Support for the Teacher's Awareness. In: Advanced Learning Technologies (ICALT), 2013 IEEE 13th International Conference on (pp. 123-127). IEEE. [DOI:10.1109/ICALT.2013.41].[GS Search]
Medeiros, F., Gomes, A., Amorim, R., & Medeiros, G (2013). Redesigning collaboration tools to enhance social presence in online learning environments. In: International Conference on Collaboration and Technology (pp. 175-191). Springer, Berlin, Heidelberg. [GS Search]
Morgan, D. L., & Krueger, R. A. (1998). Developing questions for focus groups (Vol. 3). Sage. [GS Search]
Nguyen, Q., Huptych, M., & Rienties, B. (2018). Using Temporal Analytics to Detect Inconsistencies between Learning Design and Student Behaviours. Journal of Learning Analytics, 5(3), 120-135. [DOI:10.18608/jla.2018.53.8].[GS Search]
Picciano, A. G. (2002). Beyond student perceptions: Issues of interaction, presence, and performance in an online course. Journal of Asynchronous learning networks, 6(1), 21-40. [GS Search]
Plaisant, C. (2005). Information visualization and the challenge of universal usability. In: Exploring geovisualization (pp. 53-82). Elsevier. [DOI:10.1016/B978-008044531-1/50421-8].[GS Search]
Relatório ABED (2016). Relatório analítico da aprendizagem a distância no Brasil. ABED. São Paulo, SP. Disponível em: http://abed.org.br/censoead2016/Censo_EAD_2016_portugues.pdf.
Silva Junior, C. B., & Oliveira. I. C. A (2016). Learning analytics: Revisão da literatura e o estado da arte. In Métodos e Tecnologias, 22o Congresso Internaional ABED de Educação a Distância. ABED. São Paulo, SP. Disponível em: http://www.abed.org.br/congresso2016/trabalhos/329.pdf.
Silva, J. C., Brito, A. V., & Medeiros, F. P. A. (2015). Mapeamento Sistemático da Literatura acadêmico-científica sobre Análise de Redes Sociais aplicada em E-Learning. Revista Brasileira de Informática na Educação, 23(1), 139-148. [GS Search]
Skinner, E., Furrer, C., Marchand, G., & Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic?. Journal of educational psychology, 100(4), 765.[DOI:10.1037/a0012840].[GS Search]
Ward, M. O., Grinstein, G., & Keim, D. (2015). Interactive data visualization: foundations, techniques, and applications. AK Peters/CRC Press. [GS Search]
Zielinski, F. D. C., & Schmitt, M. A. R. (2015). Uma ferramenta gráfica para suporte à atividade docente no Moodle. RENOTE, 13(1). [DOI:10.22456/1679-1916.57644].[GS Search]
Arquivos adicionais
Published
Como Citar
Issue
Section
Licença
Copyright (c) 2020 Maria Tatiane de Souza Brito, Francisco Petrônio Alencar de Medeiros, Ed Porto Bezerra, Alex Sandro Rodrigues Barbosa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.