The Use of Computational Thinking through Tangible Interfaces for Robot Programming

Authors

DOI:

https://doi.org/10.5753/rbie.2023.2824

Keywords:

Communication and Information Technologies, Tangible Interface, Robot Programming, Computational Thinking, Teaching and learning algorithms

Abstract

Tangible User Interfaces (TUI) are tools that can fit into a common user interaction environment and propose the representability of virtual objects through physical objects. One of the intentions is to take advantage of the skills that exist in haptic interaction to achieve a certain objective, including teaching and learning. This article proposes the construction of a tangible interface to be used in robot programming, using concepts such as computional thinking (CT) and Bloom’s taxonomy as theoretical bases for teaching and learning. The user interacts with the interface through blocks, each of which has a specific function (front, right, left, back, loop and if). With the blocks properly positioned on a platform, in their execution order, the robot can execute the planned movement. The interface validation was performed with 10 elementary school students, aged eight to nine years. In the result, it was possible to observe a good evaluation for usability, in addition to the application of the concepts of bloom taxonomy. Quantitatively, it was not possible to observe a significant difference in the averages of the tests on the CT (pre and post tests), despite the descriptive statistical measures showing a higher concentration of correct answers in the tests after the experiment. Qualitatively, the experiments showed the use of CT concepts such as abstraction, generalization, logical analysis, evaluation and the very concept of algorithm.

Downloads

Download data is not yet available.

References

Armstrong, P. (2016). Bloom’s taxonomy. Vanderbilt University Center for Teaching. [GS Search]

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to k-12: what is involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48–54. [GS Search]

Barros, R. P., Torres, V. P., Burlamaqui, A. M. F., & Natal, R. (2014). Cardbot: Tecnologias assistivas para imersão de deficientes visuais na robótica educacional. In Workshop de robótica educacional (Vol. 5, pp. 11–16). [GS Search]

Berry, M. (2013). Computing in the national curriculum: a guide for primary teacher. newnorth print, ltd. bedford. [GS Search]

Blikstein, P. (2008). O pensamento computacional e a reinvenção do computador na educação. Disponível em [Link].

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Bloom taxonomy of educational objectives. In Allyn and bacon. Pearson Education. [GS Search]

Brackmann, C. P. (2017). Desenvolvimento do pensamento computacional através de atividades desplugadas na educação básica. [GS Search]

Brasil (2022). Normas sobre computação na educação básica – complemento à base nacional comum curricular (bncc). Ministério da Educação. Conselho Nacional de Educação.Parecer Homologado. Despacho do Ministro, publicado no D.O.U. de 03/10/2022, Seção 1, Pág. 55, 2022c. Disponível em [link].

Brooke, J., et al. (1996). Sus-a quick and dirty usability scale. Usability evaluation in industry, 189(194), 4–7. [GS Search]

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking-a guide for teachers. [GS Search]

Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2’eu.). HilIsUale, NJ: Lawrence Eribaum Associates. [GS Search]

de Araújo, A. L. S. O., Scaico, P. D., de Paiva, L. F., de Morais Rabêlo, H., de Luna Santos, L., Pessoa, F. I. R., dos Santos Costa, L. (2013). Aplicação da taxonomia de bloom no ensino de programação com scratch. In Anais do workshop de informática na escola (Vol. 1, p. 31). [GS Search]

de Jesus, E. A., & Raabe, A. L. A. (2009). Interpretações da taxonomia de bloom no contexto da programaçao introdutória. In Brazilian symposium on computers in education (simpósio brasileiro de informática na educação-sbie) (Vol. 1). [GS Search]

dos Santos Soares, M. (2004). Metodologias ágeis extreme programming e scrum para o desenvolvimento de software. Revista Eletrônica de Sistemas de Informação, 3(1). [GS Search]

Falcão, T. P., & Gomes, A. S. (2007). Interfaces tangíveis para a educação. In Brazilian symposium on computers in education (simpósio brasileiro de informática na educação-sbie) (Vol. 1, pp. 579–589). [GS Search]

Farr, W., Yuill, N., & Raffle, H. (2010). Social benefits of a tangible user interface for children with autistic spectrum conditions. Autism, 14(3), 237–252. [GS Search]

Ferri, J., & dos Santos Rosa, S. (2016). Como o ensino de programação de computadores pode contribuir com a construção de conhecimento na educação básica uma revisão sistemática da literatura. RENOTE-Revista Novas Tecnologias na Educação, 14(2). [GS Search]

Fishkin, K. P. (2004). A taxonomy for and analysis of tangible interfaces. Personal and Ubiquitous computing, 8(5), 347–358. [GS Search]

Ishii, H. (2008). The tangible user interface and its evolution. Communications of the ACM, 51(6), 32–36. [GS Search]

Júnior, E. d. S. S., Pinto, S. C. C., & Braz, R. M. M. (2018). A computação embarcada, a plataforma arduíno e a internet das coisas como tecnologia assistiva na construção de mapas táteis para os alunos com deficiência visual no processo de ensino e aprendizagem. In Anais dos workshops do congresso brasileiro de informática na educação (Vol. 7, p. 53). [GS Search]

Kakehashi, S., Motoyoshi, T., Koyanagi, K., Ohshima, T., & Kawakami, H. (2013). P-cube: Block type programming tool for visual impairments. In 2013 conference on technologies and applications of artificial intelligence (pp. 294–299). [GS Search]

Lewis, J. R. (2018). The system usability scale: past, present, and future. International Journal of Human–Computer Interaction, 34(7), 577–590. [GS Search]

Lipsey, M. W., Puzio, K., Yun, C., Hebert, M. A., Steinka-Fry, K., Cole, M. W., Busick, M. D. (2012). Translating the statistical representation of the effects of education interventions into more readily interpretable forms. National Center for Special Education Research. [GS Search]

Lozano, M. D., Penichet, V. M., Leporini, B., & Fernando, A. (2018). Tangible user interfaces to ease the learning process of visually-impaired children. In Proceedings of the 32nd international bcs human computer interaction conference 32 (pp. 1–5). [GS Search]

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014). Computational thinking in k-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1–29). [GS Search]

Mohamed, K., Dorgham, Y., & Sharaf, N. (2021). Kodockly: Using a tangible robotic kit for teaching programming. In Csedu (1) (pp. 137–147). Disponível em [Link].

Molina-García, J. C., Rodríguez-Elías, O. M., Glasserman-Morales, L. D., & Rodríguez-Pérez, J. M. (2016). Designing a strategy of programming learning for kids through the use of the"micompu. mx"federal program: A pilot study. In 2016 4th international conference in software engineering research and innovation (conisoft) (pp. 104–109). [GS Search]

Nunes, A. L., Radicchi, A. O., & Botega, L. C. (2011). Interfaces tangíveis: Conceitos, arquiteturas, ferramentas e aplicações. Realidade Virtual e Aumentada: aplicações e tendências, 26–44. [GS Search]

Panaggio, B. Z., Carbajal, M. L., & Baranauskas, M. C. C. (2019). Programação tangível no mundo físico: Taprec+ sphero. Revista Brasileira de Informática na Educação, 27(03), 32–51. [GS Search]

Posada, J. E. G., Hayashi, E. C., & Baranauskas, M. C. C. (2014). On feelings of comfort, motivation and joy that gui and tui evoke. In International conference of design, user experience, and usability (pp. 273–284). [GS Search]

Román-Gonzalez, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2015). Test de pensamiento computacional: diseño y psicometría general. In Iii congreso internacional sobre aprendizaje, innovación y competitividad (cinaic 2015) (pp. 1–6). [GS Search]

Scott, T. (2003). Bloom’s taxonomy applied to testing in computer science classes. Journal of Computing Sciences in Colleges, 19(1), 267–274. [GS Search]

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D., Verno, A. (2011). Csta k–12 computer science standards: Revised 2011. ACM. [GS Search]

Shaer, O., & Jacob, R. J. (2009). A specification paradigm for the design and implementation of tangible user interfaces. ACM Transactions on Computer-Human Interaction (TOCHI), 16(4), 1–39. [GS Search]

Suzuki, H., & Kata, H. (1995). Interaction-level support for collaborative learning: Algoblock—an open programming language. [GS Search]

Sylla, C., Branco, P., Coutinho, C., & Coquet, E. (2012). Tuis vs. guis: comparing the learning potential with preschoolers. Personal and Ubiquitous Computing, 16(4), 421–432. [GS Search]

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008). Bloom’s taxonomy for cs assessment. In Proceedings of the tenth conference on australasian computing education-volume 78 (pp. 155–161). [GS Search]

Viana, C., & Raabe, A. (2018). Interface de programação tangível para produção de algorit- mos sonoros. In Anais dos workshops do congresso brasileiro de informática na educação (Vol. 7, p. 125). [GS Search]

Vieira, C. E. C., de Lima Junior, J. A. T., & de Paula Vieira, P. (2015). Dificuldades no processo de aprendizagem de algoritmos: uma análise dos resultados na disciplina de al1 do curso de sistemas de informação da faeterj–campus paracambi. Cadernos UniFOA, 10(27), 5–15. [GS Search]

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly, xiii–xxiii. [GS Search]

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. [GS Search]

Published

2023-03-12

How to Cite

GONZAGA DE MATTOS VOGEL, B.; PINTO PEREIRA, C. The Use of Computational Thinking through Tangible Interfaces for Robot Programming. Brazilian Journal of Computers in Education, [S. l.], v. 31, p. 117–148, 2023. DOI: 10.5753/rbie.2023.2824. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/2824. Acesso em: 16 sep. 2024.

Issue

Section

Articles