Una nueva aproximación al Problema de Balanceo de Currículo Académico

Authors

DOI:

https://doi.org/10.5753/rbie.2023.2965

Keywords:

Problema de Equilibrio del Currículo Académico, Programación Entera Quadrática Mixta, Programación por Restricciones, Método de Suma Ponderada, Frontera de Pareto, Desarrollo web

Abstract

El Equilibrio Curricular Académico es una alternativa para la construcción de trayectorias curriculares, con foco en la planificación de la carga horaria del estudiante, mediante la asignación de asignaturas por periodos de forma equilibrada en relación al número de créditos y respetando los prerrequisitos. Este trabajo presenta el desarrollo de un modelo multiobjetivo titulado Equilibrio Curricular con Datos de Fracaso en las Materias, el cual tiene tres objetivos: distribuir créditos de manera más equitativa entre periodos, acercar disciplinas interrelacionadas y equilibrar más adecuadamente disciplinas con alta retención. El modelo fue transcrito utilizando un algoritmo exacto de Programación Entera Mixta y Programación por Restricciones, y dada su característica multiobjetivo, se aplicó el método de Suma Ponderada en la obtención de soluciones, constituidas en la frontera de Pareto. Los resultados experimentales obtenidos al probar un plan de estudios de educación superior proporcionaron mejoras significativas en el equilibrio de la carga de trabajo de los estudiantes. Se desarrolló una herramienta computacional que engloba el nuevo modelo, con el fin de posibilitar la aplicación del enfoque propuesto en escenarios reales, favoreciendo el aprendizaje y culminación del curso en el tiempo ideal. En una Encuesta de Opinión realizada a estudiantes y directivos se demostró el cumplimiento de los objetivos de la herramienta y su aplicabilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Biggs, J. (1987). Study process questionnaire manual. Student approaches to learning and studying. Hawthorn, Vic.: Australian Council for Educational Research. Retrieved from [Link]. [GS Search]

Bowyer, K. (2012). A model of student workload. Journal of Higher Education Policy and Management, 34(3), 239–258. doi: 10.1080/1360080X.2012.678729 [GS Search]

Brás, C., Assis, L., Vivas, A., Pitangui, C., & Dorça, F. (2023). Desenvolvimento curricular baseado em dados factuais: Uma revisão sistemática da literatura. Revista Novas Tecnologias na Educação, 20(2), 165–175. doi: 10.22456/1679-1916.129164 [GS Search]

Castro, C., Crawford, B., & Monfroy, E. (2009). A genetic local search algorithm for the multiple optimisation of the balanced academic curriculum problem. In Cutting-edge research topics on multiple criteria decision making (pp. 824–832). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-02298-2_119 [GS Search]

Castro, C., & Manzano, S. (2001). Variable and value ordering when solving balanced academic curriculum problems. In 6th workshop of the ERCIM WG on constraints (Vol.cs.PL/0110007). Prague. doi: 10.48550/arXiv.cs/0110007 [GS Search]

Center, H. D. (2022). Documentation Heroku [Computer software manual]. Retrieved from [Link]

Chakradhar, M., Charan, M. S., Sai, R. U., Kunal, M., Murthy, Y. V., & Shashidhar, G. K. (2019). Academic curriculum load balancing using GA. 2019 10th international conference on computing, communication and networking technologies, ICCCNT 2019, 1–5. doi: 10.1109/ICCCNT45670.2019.8944897 [GS Search]

Chambers, E. (1992). Work-load and the quality of student learning. Studies in Higher Education, 17(2), 141–153. doi: 10.1080/03075079212331382627 [GS Search]

Chiarandini, M., Di Gaspero, L., Gualandi, S., & Schaerf, A. (2012). The balanced academic curriculum problem revisited. Journal of Heuristics, 18(1), 119-148. doi: 10.1007/s10732-011-9158-2 [GS Search]

Django, S. F. (2022). Django documentation [Computer software manual]. Retrieved from [Link]

Entwistle, N., & Tait, H. (1990). Approaches to learning, evaluations of teaching, and preferences for contrasting academic environments. Higher Education, 19(2), 169–194. doi: 10.1007/BF00137106 [GS Search]

Gaspero, L., & Schaerf, A. (2008). Hybrid local search techniques for the generalized balanced academic curriculum problem. In 5th international workshop on hybrid metaheuristics (p. 146–157). Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-540-88439-2_11 [GS Search]

Grodzevich, O., & Romanko, O. (2006). Normalization and other topics in multi-objective optimization. In Fields–mitacs industrial problems workshop 2006 (pp. 89–101). [GS Search]

Group, T. P. G. D. (2022). Postgresql 14.4 documentation [Computer software manual]. Retrieved from [Link]

Gurobi, O. L. (2022). Gurobi optimizer reference manual [Computer software manual]. Retrieved from [Link]

Hassenzahl, M. (2008). User experience (UX): Towards an experiential perspective on product quality. In Proceedings of the 20th Conference on l'interaction homme-machine (p. 11–15). New York: Association for Computing Machinery. doi: 10.1145/1512714.1512717 [GS Search]

Hnich, B., Kiziltan, Z., & Walsh, T. (2002). Modelling a balanced academic curriculum problem. In CP-AI-OR-2002 (pp. 121–131). [GS Search]

Jefferson, C., Miguel, I., Hnich, B., Walsh, T., & Gent, I. P (1999). CSPLib: A problem library for constraints. Retrieved from [Link]

Kember, D. (2004). Interpreting student workload and the factors which shape students' perceptions of their workload. Studies in Higher Education, 29, 165–184. doi: 10.1080/0307507042000190778 [GS Search]

Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering (Tech. Rep. No. EBSE 2007-001). Keele University and Durham University Joint Report. Retrieved from [Link]

Lambert, T., Castro, C., Monfroy, E., & Saubion, F. (2006). Solving the balanced academic curriculum problem with an hybridization of genetic algorithm and constraint propagation. In Artificial intelligence and soft computing - ICAISC 2006 (pp. 410-419). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/1178523_144 [GS Search]

Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction and evaluation of a user experience questionnaire. In Hci and usability for education and work (Vol. 5298, p. 63-76). Springer Berlin Heidelberg. doi: 10.1007/978-3-540-89350-9_6 [GS Search]

Likert, R. (1932). A technique for the measurement of attitudes. New York. [GS Search]

Lima, L. F. F. P., Silva, I. L. A. S., & Silva, D. R. D. (2019). Análise de ados de percursos curriculares dos alunos de Ciência da Computação da Universidade Federal da Paraíba. Renote, 17(3), 173-182. doi: 10.22456/1679-1916.99467 [GS Search]

Lopes, A., & Macedo, E. (2017). Teorias de currículo. São Paulo: Cortez. [GS Search]

Magalhães, E. A., Silveira, S. d. F. R., Abrantes, L. A., Ferreira, M. A. M., & Wakim, V. R. (2010). Custo do ensino de graduação em instituições federais de ensino superior: o caso da Universidade Federal de Viçosa. Revista de Administração Pública, 44(3), 637–666. doi: 10.1590/S0034-76122010000300005 [GS Search]

Mendez, G., Ochoa, X., Chiluiza, K., & De Wever, B. (2014). Curricular Design Analysis: A Data-Driven Perspective. Journal of Learning Analytics, 1(3), 84–119. doi: 10.18608/jla.2014.13.6[GS Search]

Monette, J.-N., Deville, Y., Dupont, P., Deville, Y., & Dupont, P. (2007). A CP approach to the balanced academic curriculum problem. The Seventh International Workshop on Symmetry and Constraint Satisfaction Problems (2007). [GS Search]

Nielsen (1993). Usability engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. [GS Search]

Orehovački, T., Plantak Vukovac, D., Džeko, M., & Stapić, Z. (2018). Evaluating relevant UX dimensions with respect to IoT ecosystem intended for students’ activities tracking and success prediction. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 10924 LNCS, pp. 279–293). doi: 10.1007/978-3-319-91743-6_22[GS Search]

Pareto, V., Bousquet, G., & Busino, G. (1964). Cours d'economie politique. Geneva: Librarie Droz. [GS Search]

Pinto, S. F., & Ferreira, R. S. (2020). Analisando ementas curriculares usando redes complexas. Revista Brasileira de Ensino de Física, 42. doi: 10.1590/1806-9126-rbef-2020-0101[GS Search]

Ramsden, P., & Entwistle, N. J. (1981). Effects of academic departments on students' approaches to studying. British Journal of Educational Psychology, 51(3), 368–383. doi: 10.1111/j.2044-8279.1981.tb02493.x[GS Search]

Rauschenberger, M., Schrepp, M., Cota, M., Olschner, S., & Thomaschewski, J. (2013). Efficient measurement of the user experience of interactive products. How to use the User Experience Questionnaire (UEQ). Example: Spanish Language Version. International Journal of Interactive Multimedia and Artificial Intelligence, 2, 39-45. doi: 10.9781/ijimai.2013.215 [GS Search]

Rosas-Tellez, L. V., Martínez-Flores, J. L., & Zanella-Palacios, V. (2011). Evolutionary Strategies for the Academic Curriculum Balanced Problem. In Proceedings of the international conference on evolutionary computation theory and applications (pp. 534–538). SciTePress - Science and Technology Publications. doi: 10.5220/0003723805340538 [GS Search]

Rubio, J. M., Palma, W., Rodriguez, N., Soto, R., Crawford, B., Paredes, F., & Cabrera-Guerrero, G. (2013, 01). Solving the balanced academic curriculum problem using the ACO metaheuristic. Mathematical Problems in Engineering, 2013. doi: 10.1155/2013/793671 [GS Search]

Rubio, J. M., Soto, R., Jorquera, H., Aguilera, J., & Vidal, C. (2018). Resolución del problema de balanceo de mallas curriculares mediante algoritmo de luciérnagas. Ingeniare. Revista chilena de ingeniería, 26, 102–112. doi: 10.4067/s0718-33052018000500102 [GS Search]

Rubio, J. M., Vidal-Silva, C., Carter, L., & Tupac-Yupanqui, M. (2021). Balanced academic curriculum: Looking for an optimal solution with metaheuristics and functional programming. Turkish Journal of Computer and Mathematics Education, 12(6), 1181-1188. doi: 10.17762/turcomat.v12i6.2435 [GS Search]

Saviani, N. (2003). Saber escolar, currículo e didática: problemas da unidade conteúdo/método no processo pedagógico. Campinas: Autores Associados. [GS Search]

Silva, E., Franco, N., Ferro, M., & Fidalgo, R. (2019). Mental workload impact of a visual language on understanding SQL queries. In Anais do XXX simpósio brasileiro de informática na educação (SBIE 2019) (pp. 239-248). Brazilian Computer Society (Sociedade Brasileira de Computação - SBC). doi: 10.5753/cbie.sbie.2019.239 [GS Search]

Silva, G., Stroele, V., Dantas, M., & Campos, F. (2019). Hold Up: Modelo de detecção e controle de emoções em ambientes acadêmicos. In Anais do XXX simpósio brasileiro de informática na educação (SBIE 2019) (pp. 139-148). Brazilian Computer Society (Sociedade Brasileira de Computação - SBC). doi: 10.5753/cbie.sbie.2019.139 [GS Search]

Slim, A. (2016). Curricular analytics in higher education. Unpublished doctoral dissertation, University of New Mexico, Albuquerque. Retrieved from [GS Search]

Slim, A., Heileman, G. L., Kozlick, J., & Abdallah, C. T. (2014). Employing markov networks on curriculum graphs to predict student performance. In 2014 13th international conference on machine learning and applications (pp. 415–418). IEEE. doi: 10.1109/ICMLA.2014.74 [GS Search]

Slim, A., Heileman, G. L., Lopez, E., Yusuf, H. A., & Abdallah, C. T. (2015). Crucial based curriculum balancing: a new model for curriculum balancing. In 10th international conference on computer science education (ICCSE) (p. 243-248). doi: 10.1109/ICCSE.2015.7250250 [GS Search]

Ünal, Y. Z., & Uysal, Ö. (2014). A new mixed integer programming model for curriculum balancing: Application to a turkish university. European Journal of Operational Research, 238(1), 339-347. doi: 10.1016/j.ejor.2014.03.015 [GS Search]

Van Rossum, G., & Drake, F. L. (2011). The python language reference. Scotts Valley: CreateSpace. [GS Search]

Vasconcellos, C. S. (1995). Planejamento: plano de ensino-aprendizagem e projeto educativo. São Paulo: Libertad. [GS Search]

Villalobos-Cid, M., Orellana, M., Vasquez, O. C., Pinto-Sothers, E., & Inostroza-Ponta, M. (2019). Dealing with the balanced academic curriculum problem considering the chilean academic credit transfer system. In 38th international conference of the chilean computer science society (SCCC). doi: 10.1109/SCCC49216.2019.8966411 [GS Search]

Yin, S., Katal, A., Singh, V. K., Choudhury, T., Imran, F., & Hossain, M. S. (2023). Balancing academic curriculum problem solution: A discrete firefly-based approach. Education Research International, 2023, 4300472. doi: 10.1155/2023/4300472 [GS Search]

Archivos adicionales

Published

2023-10-01

Cómo citar

LOPES, C. B. de S.; ASSIS, L. P. de; ANDRADE, A. V.; PITANGUI, C. G.; DORÇA, F. A. Una nueva aproximación al Problema de Balanceo de Currículo Académico. Revista Brasileña de Informática en la Educación, [S. l.], v. 31, p. 631–658, 2023. DOI: 10.5753/rbie.2023.2965. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/2965. Acesso em: 22 nov. 2024.

Issue

Section

Artículos