Clasificación automática de estilos de materiales de aprendizaje
DOI:
https://doi.org/10.5753/rbie.2023.3431Keywords:
Estilos de lecciones en vídeo, Estilos de materiales de aprendizaje, Diseñador de Medios Instruccionales, Clasificación automáticaAbstract
Aunque las lecciones en vídeo se utilizan a menudo en diversas áreas, la falta de un enfoque común para definir y clasificar sus estilos da como resultado el uso de muchos modelos diferentes para estos propósitos. Es necesario construir un marco a través del cual estos estilos puedan definirse y clasificarse. Se ha hecho mucho para investigar los efectos de estos estilos en la participación de los estudiantes y los resultados del aprendizaje. Estos estudios sugieren que los estilos de lecciones en video afectan el rendimiento académico y que los estudiantes aprenden mejor a través de un determinado estilo de lección en video. Con base en esto, proponemos un modelo unificado para clasificar estilos de lecciones en video según las nomenclaturas y definiciones utilizadas en la literatura.
Además, presentamos un método para clasificar automáticamente cuatro estilos populares de lecciones en vídeo. La clasificación automática es útil para que los sistemas de recomendación sugieran materiales más consistentes con las preferencias de los estudiantes y los resultados de aprendizaje previstos.
Descargas
Citas
Ali, M. M., Qaseem, Mohammad S. & Hussain, Altaf. (2021). Segmenting lecture video into partitions by analyzing the contents of video. International Conference on Data Analytics for Business and Industry (ICDABI), 191–196. https://doi.org/10.1109/ICDABI53623.2021.9655924 [GS Search]
Arruabarrena, R., Sánchez, A., Domínguez, C., & Jaime, A. (2021). A novel taxonomy of student-generated video styles. International Journal of Educational Technology in Higher Education, 18, 68. https://doi.org/10.1186/s41239-021-00295-6 [GS Search]
Aryal, S., et al. (2018). Using pre-trained models as feature extractor to classify video styles used in mooc videos. IEEE International Conference onInformation and Automation for Sustainability (ICIAfS), 1–5. https://doi.org/10.1109/ICIAFS.2018.8913347 [GS Search]
Balasubramanian, V., Sooryanarayan,D., & Kanakarajan, N. (2015). A multimodal approach for extracting content descriptive metadata from lecture videos. Journal of Intelligent Information Systems,46, 121–145. https://doi.org/10.1007/s10844-015-0356-5 [GS Search]
Bordes, S. J., et al. (2021). Towards the optimal use of video recordings to support the flipped classroom in medical school basic sciences education. Medical education online, 26, 1841406. https://doi.org/10.1080/10872981.2020.1841406 [GS Search]
Chen, H. T., & Thomas, M. (2020). Effects of lecture video styles on engagement and learning. ETRD, 68, 2147–2164. https://doi.org/10.1007/s11423-020-09757-6 [GS Search]
Choe, R., et al. (2019). Student satisfaction and learning outcomes in asynchronous online lecture videos. CBE Life Sciences Education, 18. https://doi.org/10.1187/cbe.18-08-0171 [GS Search]
Chorianopoulos, K. (2018). A taxonomy of asynchronous instructional video styles. International Review of Research in Open and Distributed Learning, 19. https://doi.org/10.19173/irrodl.v19i1.2920 [GS Search]
Ciurez, M. A., et al. (2019). Automatic categorization of educational videos according to learning styles. International Conference on Software, Telecommunications and ComputerNetworks (SoftCOM), 1–6. https://doi.org/10.23919/SOFTCOM.2019.8903601 [GS Search]
Crook, C.; Schofield, L. (2017). The video lecture. The Internet and Higher Education, 34, 56–64. https://doi.org/10.1016/j.iheduc.2017.05.003 [GS Search]
Davila, K. et al. (2021). Fcn-lecturenet: Extractive summarization of whiteboard and chalkboard lecture videos. IEEE Access, 9, 104469–104484. https://doi.org/10.1109/ACCESS.2021.3099427003 [GS Search]
Davila, K., & Zanibbi, R. (2018). Visual search engine for handwritten and typeset math in lecture videos and latex notes. 16th International Conference on Frontiers in Handwriting Recognition (ICFHR),50–55. https://doi.org/10.1109/ICFHR-2018.2018.00018427003 [GS Search]
Oliveira, E. S. et al.(2018). Identificação Automática de Estilos de Aprendizagem: Uma Revisão Sistemática da Literatura. XXVI Workshop sobre Educação em Computação. https://doi.org/10.5753/wei.2018.3488 [GS Search]
Deng, R., & Benckendorff, P. (2021). What are the key themes associated with the positive learning experience in moocs? an empirical investigation of learners’ ratings and reviews. International Journal of Educational Technology in Higher Education, 18, 28. https://doi.org/10.1186/s41239-021-00244-3 [GS Search]
Gilardi, M., Holroyd, P., Newbury, P., & Watten, P. (2015). The effects of video lecture delivery formats on student engagement. Science and Information Conference, 791–796. https://doi.org/10.1109/SAI.2015.7237234 [GS Search]
Guo, P., Kim, J., & Rubin, R. (2014). How videoproduction affects student engagement: An empirical study of mooc videos. First ACM Conference on Learning @ Scale Conference, 41–50. https://doi.org/10.1145/2556325.2566239 [GS Search]
Hansch, A. et al. (2015). Video and online learning: Critical reflections and findings from the field. SSRN eLibrary. https://doi.org/10.2139/ssrn.2577882 [GS Search]
Ilioudi, C., Giannakos, M., & Chorianopoulos,K. (2013). Investigating differences among the commonly used video lecture styles. WAVe Workshop on Analytics on Video-based Learning.
Inman, J., & Myers, S. (2018). Now streaming: Strategies that improve video lectures. IDEA Center, Inc. [GS Search]
Jayoma, J. M., Moyon, E. S.,& Morales, E. O. (2020). Ocr based document archiving and indexing using pytesseract: A record management system for dswd caraga, philippines. IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM),1–6. https://doi.org/10.1109/HNICEM51456.2020.9400000 [GS Search]
Kao, J. L., Chen, S. Y., & Duh, D.J. (2013).Detecting handwritten annotation by synchronization of lecture slides and videos. Computer Engineering and Applied Computing, 29. [GS Search]
Kota, B. U. et al. (2021). Automated whiteboard lecture video summarization by content region detection and representation. 25th International Conference on Pattern Recognition (ICPR), 10704–10711. https://doi.org/10.1109/ICPR48806.2021.9412386 [GS Search]
Köse, E., Taslibeyaz, E.,& Karaman, S. (2021). Classification of instructional videos. Technology, Knowledge and Learning, 26, 1079-1109. https://doi.org/10.1007/s10758-021-09530-5 [GS Search]
Lackmann, S. et al. (2021). The influence of video format on engagement and performance in online learning. Brain Sciences, 11, 128. https://doi.org/10.3390/brainsci11020128 [GS Search]
Lee, G. C. et al. Robust handwriting extraction and lecture video summarization. Multimedia Tools and Applications, p. 357-360,2017. https://doi.org/10.1007/s11042-016-3353-y [GS Search]
Lin, J. et al. (2019). Automatic knowledge discovery in lecturing videos via deep representation. IEEE Access, 7, 33957–33963. https://doi.org/10.1109/ACCESS.2019.2904046 [GS Search]
Lu, X. et al. (2020). Research on the Impacts of Feedback in Instructional Videos on College Students' Attention and Learning Effects. IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 513-516. https://doi.org/10.1109/CSCWD49262.2021.9437774 [GS Search]
Mayer, Richard E., Fiorella, L., & Stull, A.(2020). Five ways to increase the effectiveness of instructional video. Educational Technology Research and Development, 68. https://doi.org/10.1007/s11423-020-09749-6 [GS Search]
Mayer, R., & Moreno, R. (2002). Animation as an Aid to Multimedia Learning. EducPsychol Rev., 14, 87-99. https://doi.org/10.1023/A:1013184611077 [GS Search]
Ng, Yen Y., & Przybyłek,A. (2021). Instructor Presence in VideoLectures: Preliminary Findings From an Online Experiment. IEEE Access, 9, 36485-36499. https://doi.org/10.1109/ACCESS.2021.3058735 [GS Search]
Ozan, O., & Ozarslan,Y. (2016). Video lecture watching behaviors of learners in online courses. Educational Media International, 53,1-15. https://doi.org/10.1080/09523987.2016.1189255 [GS Search]
Rahim, Muhamad I., & Shamsudin,S. Video Lecture Styles in MOOCs by Malaysian Polytechnics. 3rd International Conference on Education and Multimedia Technology, Association for Computing Machinery, 64–68. https://doi.org/10.1145/3345120.3345169 [GS Search]
Rawat, Y., Bhatt, C., & Kankanhalli,M. (2014). Mode of teaching based segmentation and annotation of video lectures. 12th International Workshop on Content-Based Multimedia Indexing (CBMI), 1-4. https://doi.org/10.1109/CBMI.2014.6849840 [GS Search]
Rosenthal, S., & Walker, Z. (2020). Experiencing Live Composite Video Lectures: Comparisons with Traditional Lectures and Common Video Lecture Methods. International Journal for the Scholarship of Teaching and Learning, 14. https://doi.org/10.20429/ijsotl.2020.140108 [GS Search]
Sablic, M., Mirosavljević, A., & Škugor, A. (2020). Video-Based Learning(VBL)—Past, Present and Future: an Overview of the Research Published from 2008 to 2019. Technology, Knowledge and Learning, 1-17. https://doi.org/10.1007/s10758-020-09455-5 [GS Search]
Santos Espino et al. (2016). Speakers and boards: A survey of instructional video styles in MOOCs. Technical Communication, 63, 101-115. [GS Search]
Shanmukhaa, G. S., Nandita, S. K., & Kiran, M V.(2020). Construction of knowledge graphs for video lectures. 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 127–131. https://doi.org/10.1109/ICACCS48705.2020.9074320 [GS Search]
Sonia, S., Kumar, P., & Saha, A. (2021). Automatic question-answer generation from video lecture using neural machine translation. 8th International Conference on Signal Processing and Integrated Networks (SPIN), 661–665. https://doi.org/10.1109/SPIN52536.2021.9566139 [GS Search]
Stull, T. et al. (2018). Using transparent whiteboards to boost learning from online STEM lectures. Computers & Education, 120, 146-159. https://doi.org/10.1016/j.compedu.2018.02.005 [GS Search]
Urala, B. et al. (2018). Automated detection of handwritten whiteboard content in lecture videos for summarization. 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), 19–24. https://doi.org/10.1109/ICFHR-2018.2018.00013 [GS Search]
Vegas, S., Juristo, N., & Basili, V. R.(2009). Maturing Software Engineering Knowledge through Classifications: A Case Study on Unit Testing Techniques. IEEE Transactions on Software Engineering, 35, 551-565. https://doi.org/10.1109/TSE.2009.13 [GS Search]
Wang, Y. et al. (2019). Research on Leamers' Eye Movements for Online Video Courses. 14th International Conference on Computer Science & Education (ICCSE), 661-666. https://doi.org/10.1109/ICCSE.2019.8845375 [GS Search]
Xu, F. et al. Content Extraction from Lecture Video via Speaker Action Classification Based on Pose Information. International Conference on Document Analysis and Recognition (ICDAR), 1047-1054. https://doi.org/10.1109/ICDAR.2019.00171 [GS Search]
Yilmaz, A. et al. (2021). Detection and breed classification of cattle using yolo v4 algorithm. International Conference on Innovations in Intelligent SysTems and Applications (INISTA),1–4. https://doi.org/10.1109/INISTA52262.2021.9548440 [GS Search]
Yousaf, M. H., Azhar, K., & Sial, H. A. (2015). A novel vision based approach for instructor’s performance and behavior analysis. International Conference on Communications, Signal Processing, and their Applications (ICCSPA’15), 1–6. https://doi.org/10.1109/ICCSPA.2015.7081291 [GS Search]
Archivos adicionales
Published
Cómo citar
Issue
Section
Licencia
Derechos de autor 2023 Bernadete Aquino, Jairo Francisco de Souza, Eduardo Barrére
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.