A motivação dos estudantes em ambientes computacionais de aprendizagem: uma revisão sistemática da literatura
DOI:
https://doi.org/10.5753/rbie.2024.3353Keywords:
computação afetiva, motivação, ambientes de aprendizagemAbstract
Este artigo apresenta uma revisão sistemática das pesquisas sobre motivação em ambientes computacionais de aprendizagem, publicadas em inglês em veículos internacionais de divulgação científica. Inicialmente, foram coletados 563 artigos, provenientes das principais bases de dados de publicações científicas nas áreas de Computação e Educação. Dentre esses, 38 foram selecionados na fase final para análise, de acordo com critérios de inclusão e exclusão. Como resultado, foi possível identificar que a motivação é um construto ainda pouco explorado nas pesquisas em informática na educação, com trabalhos esparsos realizados por diferentes grupos de pesquisa e pouco consenso na definição do constructo. No entanto, alguns fatores são apresentados frequentemente, como a importância da forma de apresentação da atividade, a necessidade do estudante ter algum prazer durante o processo e a importância dele refletir sobre o próprio processo de aprendizagem. Observou-se igualmente que os tipos de tecnologias educacionais de aprendizagem utilizados são diversos, sendo os mais comuns aqueles com características comunicativas, como Sistemas Tutores Inteligentes, Sistemas Tutores Afetivos e Agentes Pedagógicos.
Downloads
Referências
Altuwairqi, K., Jarraya, S. K., Allinjawi, A., & Hammami, M. (2021). Student behavior analysis to measure engagement levels in online learning environments. Signal, Image and Video Processing, 15(7), 1387–1395. http://doi.org/10.1007/s11760-021-01869-7 . [GS Search]
Arroyo, I., Woolf, B. P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multi- media adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. International Journal of Artificial Intelligence in Education, 24, 387-426. http://doi.org/10.1007/s40593-014-0023-y . [GS Search]
Arroyo, I., Woolf, B. P., Royer, J. M., & Tai, M. (2009). Affective gendered learning companions. In Artificial Intelligence in Education (p. 41-48). http://doi.org/10.3233/978-1-60750-028-5-41. [GS Search]
Artífice, A., Ferreira, F., Marcelino-Jesus, E., Sarraipa, J., & Jardim-Gonçalves, R. (2017). Student’s attention improvement supported by physiological measurements analysis. In Technological Innovation for Smart Systems: 8th Advanced Doctoral Conference on Computing (p. 93-102). http://doi.org/10.1007/978-3-319-56077-9_8 . [GS Search]
Asteriadis, S., Tzouveli, P., Karpouzis, K., & Kollias, S. (2009). Estimation of behavioral user state based on eye gaze and head pose—application in an e-learning environment. Multimedia Tools and Applications,41,469–493. http://doi.org/10.1007/s11042-008-0240-1 . [GS Search]
Azevedo, O. B. (2020). Um agente pedagógico gentil é mais efetivo? efeito das atitudes de agentes pedagógicos animados na aprendizagem, engajamento, emoções e ansiedade dos estudantes. In: ANAIS DO XXXI SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO http://doi.org/10.5753/cbie.sbie.2020.762. [GS Search]
Barrón-Estrada, M. L., Zatarain-Cabada, R., Hernández, F. G., Bustillos, R. O., & Reyes-García, C. A. (2015). An affective and cognitive tutoring system for learning programming. In Advances in artificial intelligence and its applications: 14th mexican international conference on artificial intelligence, micai (pp. 171–182). http://doi.org/10.1007/978-3-319-27101-9_12. [GS Search]
Bercht, M. (2006). Computação afetiva: vínculos com a psicologia e aplicações na educação. In Produções do III PSICOINFO e II JORNADA do NPPI, 106-115. [GS Search]
Braga, M. (2001). Realidade virtual e educação. Revista de biologia e ciências da terra, 1(1), 0. [GS Search]
Cabestrero, R., Quirós, P., Santos, O. C., Salmeron-Majadas, S., Uria-Rivas, R., Boticario, J. G., . . . Ferri, F. J. (2018). Some insights into the impact of affective information when delivering feedback to students. Behaviour & Information Technology, 37(12), 1252–1263. http://doi.org/10.1080/0144929X.2018.1499803 . [GS Search]
Camargo, C. A. C. M., Camargo, M. A. F., & de Oliveira Souza, V. (2019). A importância da motivação no processo ensino-aprendizagem. Revista Thema, 16(3), 598–606. http://doi.org/10.15536/thema.V16.2019.598-606.1284 . [GS Search]
Deci, E. L., & Ryan, R. M. (2013). Intrinsic motivation and self-determination in human behavior. Springer Science & Business Media. [GS Search]
de Oliveira, P. C., Nakayama, M. K., Torres, M. K. L., & Nunes, C. S. N. S. (2020). O uso do learning management system (lms) por gestores de educação a distância. Revista Brasileira de Aprendizagem Aberta e a Distância, 19(1). http://doi.org/10.17143/rbaad.v19i1.346 . [GS Search]
de Oliveira Borges, L., et al. (2014). A motivação dos profissionais de saúde das unidades básicas de saúde. Psicologia: Ciência e Profissão. [GS Search]
Dias, S. B., Hadjileontiadou, S., Diniz, J. A., & Hadjileontiadis, L. (2019). Towards an intelligent learning management system: The a/b/c-teach approach. In Technology and innovation in learning, teaching and education: First international conference, tech-edu (pp. 397–411). http://doi.org/10.1007/978- 3-030-20954-4_30 . [GS Search]
Dichev, C., & Dicheva, D. (2017). Gamifying education: what is known, what is believed and what remains uncertain: a critical review. International Journal of Educational Technology in Higher Education, 14(1), 1-36. http://doi.org/10.1186/s41239-017-0042-5 . [GS Search]
D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive intelligent tutoring system. International Journal of human-computer studies, 70(5), 377–398. http://doi.org/10.1016/j.ijhcs.2012.01.004 . [GS Search]
Dweck, C. S. (2006). Mindset: The new psychology of success. Random House. [GS Search]
D’Mello, S. K., Craig, S. D., Witherspoon, A., McDaniel, B., & Graesser, A. (2008). Automatic detection of learner’s affect from conversational cues. User modeling and user-adapted interaction, 18, 45–80. http://doi.org/10.1007/s11257-007-9037-6 . [GS Search]
Ferreira, G. B., & Dias, C. C. (2017). A importância da qualidade de vida no trabalho e da motivação dos colaboradores de uma organização. Psicologia e Saúde em debate, 3(2), 30-43. http://doi.org/10.22289/2446-922X.V3N2A3 . [GS Search]
Fonseca, V. d. (2016). Importância das emoções na aprendizagem: uma abordagem neuropsicopedagógica. Revista Psicopedagogia, 33(102), 365-384. [GS Search]
Girard, S., Chavez-Echeagaray, M. E., Gonzalez-Sanchez, J., Hidalgo-Pontet, Y., Zhang, L., Burleson, W., & VanLehn, K. (2013). Defining the behavior of an affective learning companion in the affective meta-tutor project. In Artificial Intelligence in Education: 16th International Conference (pp. 21–30). http://doi.org/10.1007/978-3-642-39112-5_3. [GS Search]
Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2013). Embodied Affect in Tutorial Dialogue: Student Gesture and Posture. In Artificial Intelligence in Education: 16th International Conference (pp. 1–10). http://doi.org/10.1007/978-3-642-39112-5_1 . [GS Search]
Gutiérrez y Restrepo, E., Ferreira, F., Boticario, J. G., Marcelino-Jesus, E., Sarraipa, J., & Jardim- Goncalves, R. (2016). Enhanced Affective Factors Management for HEI Students Dropout Prevention. In Learning and Collaboration Technologies: Third International Conference (pp. 675–684). http://doi.org/10.1007/978-3-319-39483-1_61 . [GS Search]
Hilion, C. R. B. C. (2011). A influência da motivação no trabalho sobre a percepção do risco. Unpublished doctoral dissertation, Escola Superior de Ciências Empresariais. [GS Search]
Iulamanova, A., Bogdanova, D., & Kotelnikov, V. (2021). Decision Support in the Automated Compilation of Individual Training Module Based on the Emotional State of Students. IFAC-PapersOnline, 54(13), 85–90. http://doi.org/10.1016/j.ifacol.2021.10.424 . [GS Search]
Jaques, P. A., & Nunes, M. A. S. N. (2019). Computação Afetiva aplicada à Educação. Informática na Educação: técnicas e tecnologias computacionais. [GS Search]
Jaques, N., Conati, C., Harley, J. M., & Azevedo, R. (2014). Predicting Affect from Gaze Data during Interaction with an Intelligent Tutoring System. In Intelligent Tutoring Systems: 12th International Conference (pp. 29–38). http://doi.org/10.1007/978-3-319-07221-0_4 . [GS Search]
Johnson, W. L., Rickel, J. W., Lester, J. C., et al. (2000). Animated Pedagogical Agents: Face-to-face Interaction in Interactive Learning Environments. International Journal of Artificial Intelligence in Education, 11(1), 47-78. [GS Search]
Jones, A., & Castellano, G. (2018). Adaptive Robotic Tutors that support Self-regulated Learning: A longer-term investigation with primary school children. International Journal of Social Robotics, 10, 357-370. http://doi.org/10.1007/s12369-017-0458-z . [GS Search]
Katsionis, G., & Virvou, M. (2008). Personalised e-learning through an educational virtual reality game using Web Services. Multimedia Tools and Applications, 39, 47-71. http://doi.org/10.1007/s11042-007-0155-2. [GS Search]
Kim, M. K., & Ketenci, T. (2020). The role of expressed emotions in online discussions. Journal of Research on Technology in Education, 52(1), 95–112. http://doi.org/10.1080/15391523.2019.1697861. [GS Search]
Kim, M. K., Lee, I. H., & Kim, S. M. (2021). A longitudinal examination of temporal and iterative relationships among learner engagement dimensions during online discussion. Journal of Computers in Education, 8, 63–86. http://doi.org/10.1007/s40692-020-00171-8. [GS Search]
Kim, Y., Baylor, A. L., & Shen, E. (2007). Pedagogical agents as learning companions: the impact of agent emotion and gender. Journal of Computer Assisted Learning, 23(3), 220–234. http://doi.org/10.1111/j.1365-2729.2006.00210.x . [GS Search]
Kitchenham, B., Charters, S., et al. (2007). Guidelines for performing Systematic Literature reviews in Software Engineering. EBSE Technical Report. [GS Search]
Lane, H. C., Cahill, C., Foutz, S., Auerbach, D., Noren, D., Lussenhop, C., & Swartout, W. (2013). The Effects of a Pedagogical Agent for Informal Science Education on Learner Behaviors and Self-efficacy. In International Conference on Artificial Intelligence in Education, 309-318. http://doi.org/10.1007/978-3-642-39112-5_32. [GS Search]
Lehman, B., D’Mello, S., & Graesser, A. (2013). Who Benefits from Confusion Induction during Learning? An Individual Differences Cluster Analysis. In International Conference on Artificial Intelligence in Education (pp. 51–60). http://doi.org/10.1007/978-3-642-39112-5_6. [GS Search]
Lin, H.-C. K., Wu, C.-H., & Hsueh, Y.-P. (2014). The influence of using affective tutoring system in accounting remedial instruction on learning performance and usability. Computers in Human Behavior, 41, 514–522. http://doi.org/10.1016/j.chb.2014.09.052. [GS Search]
Lorenz, K. Z., Leyhausen, P., & Tonkin, B. (1973). Motivation of human and animal behavior: An ethological view. Van Nostand Reinhold. [GS Search]
Ludovico, F. M., Nunes, A. P., & Barcellos, P. d. S. C. C. (2019). Expressão de afetividade por agente pedagógico em ambiente virtual de ensino e aprendizagem: uma revisão sistemática da literatura. RENOTE: Revista Novas Tecnologias na Educação, 17(3), 617–625. http://doi.org/10.22456/1679-1916.99549. [GS Search]
Martínez, F., Barraza, C., González, N., & González, J. (2016). KAPEAN: Understanding Affective States of Children with ADHD. Journal of Educational Technology & Society, 19(2), 18–28. [GS Search]
Mayer, R., & Mayer, R. E. (2005). The Cambridge Handbook of Multimedia Learning. Cambridge University Press. [GS Search]
McQuiggan, S. W., Mott, B. W., & Lester, J. C. (2008). Modeling self-efficacy in intelligent tutoring systems: An inductive approach. User modeling and user-adapted interaction, 18, 81–123. http://doi.org/10.1007/s11257-007-9040-y . [GS Search]
Mejbri, N., Essalmi, F., Jemni, M., & Alyoubi, B. A. (2022). Trends in the use of affective computing in e-learning environments. Education and Information Technologies, 1–23. http://doi.org/10.1007/s10639-021-10769-9 . [GS Search]
Morais, F., da Silva, J., Reis, H., Isotani, S., & Jaques, P. (2017). Computação Afetiva Aplicada à Educação: uma revisão sistemática das pesquisas publicadas no Brasil. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação – SBIE). http://doi.org/10.5753/cbie.sbie.2017.163. [GS Search]
Morais, F., & Jaques, P. (2019). Predição de emoções baseada em mineração de dados: considerando a personalidade para melhorar a detecção. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação – SBIE). http://doi.org/10.5753/cbie.sbie.2019.1521. [GS Search]
Moreno, R. (2005). Multimedia learning with animated pedagogical agents. In (chap. The Cambridge handbook of multimedia learning). Cambridge University Press. http://doi.org/10.1017/CBO9780511816819.032. [GS Search]
Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments: Special issue on interactive learning environments: Contemporary issues and trends. Educational psycho- logy review, 19, 309–326. http://doi.org/10.1007/s10648-007-9047-2. [GS Search]
Nasoz, F., & Bayburt, M. (2009). ffectively intelligent user interfaces for enhanced e-learning applications. In Human centered design: First International Conference. http://doi.org/10.1007/978-3-642-02806-9_89. [GS Search]
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational psychology review, 18, 315–341. http://doi.org/10.1007/s10648-006-9029-9. [GS Search]
Pekrun, R. (2021). Teachers need more than knowledge: Why motivation, emotion, and self-regulation are indispensable. Educational Psychologist, 56(4), 312–322. http://doi.org/10.1080/00461520.2021.1991356. [GS Search]
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic Emotions in Students' Self-Regulated Learning and Achievement: A Program of Qualitative and Quantitative Research. Educational psychologist, 37(2), 91–105. https://doi.org/10.1207/S15326985EP3702_4. [GS Search]
Pelánek, R.,Papoušek,J., Rˇihák,J., Stanislav,V., &Nižnan,J. (2017). Elo-based learner modeling for the adaptive practice of facts. User Modeling and User-Adapted Interaction, 27, 89–118. http://doi.org/10.1007/s11257-016-9185-7 . [GS Search]
Pereira Aloi, P. E., Bender Haydu, V., & Carmo, J. d. S. (2014). Motivação no ensino e aprendizagem: algumas contribuições da análise do comportamento. CES Psicología, 7(2), 138–152. [GS Search]
Picard, R. (2000). Affective Computing. Massachusetts: MIT Press. [GS Search]
Radeta, M., Cesario, V., Matos, S., & Nisi, V. (2017). Gaming versus storytelling: understanding children’s interactive experiences in a museum setting. In Interactive Storytelling: 10th International Conference on Interactive Digital Storytelling, ICIDS. http://doi.org/10.1007/978-3-319-71027-3_14. [GS Search]
Reis, H. M., Alvares, D., Jaques, P. A., & Isotani, S. (2021). A Proposal of Model of Emotional Regulation in Intelligent Learning Environments. Informatics in Education, 20(2). [GS Search]
Rodrigues, M., Fdez-Riverola, F., & Novais, P. (2011). Moodle and affective computing: knowing who s on the other side. In Academic Conferences and Publishing International Limited. [GS Search]
Sabourin, J. L., & Lester, J. C. (2013). Affect and Engagement in Game-BasedLearning Environments. IEEE Transactions on Affective Computing, 5(1), 45–56. http://doi.org/10.1109/T-AFFC.2013.27 . [GS Search]
Salichs Sánchez-Caballero, M., & Malfaz Vázquez, M. Á. (2012). A new approach to modelling emotions and their use on a decision-making system for artificial agent. IEEE Transactions on Affective Computing, 3(1), 56-68. http://doi.org/10.1109/T-AFFC.2011.32. [GS Search]
Santos, M. E. C., Lübke, A. i. W., Taketomi, T., Yamamoto, G., Rodrigo, M. M. T., Sandor, C., & Kato, H. (2016). Augmented reality as multimedia: the case for situated vocabulary learning. Research and Practice in Technology Enhanced Learning, 11, 1–23. http://doi.org/10.1186/s41039-016-0028-2. [GS Search]
Schutz, P. A., & Lanehart, S. L. (2002). Emotions in education. Educational Psychologist, 37(2), 67–68. http://doi.org/10.1207/S15326985EP3702_1. [GS Search]
Shen, L., Callaghan, V., & Shen, R. (2008). Affective e-learning in residential and pervasive com- puting environments. Information Systems Frontiers, 10, 461–472. http://doi.org/10.1007/s10796-008-9104-5. [GS Search]
Shiomi, M., Kanda, T., Howley, I., Hayashi, K., & Hagita, N. (2015). Can a Social Robot Stimulate Science Curiosity in Classrooms?. International Journal of Social Robotics, 7, 641–652. http://doi.org/10.1007/s12369-015-0303-1. [GS Search]
Souza, J. C., Hickmann, A. A., Asinelli-Luz, A., & Hickmann, G. M. (2020). A influência das emoções no aprendizado de escolares. Revista Brasileira de Estudos Pedagógicos, 101, 382–403. http://doi.org/10.24109/2176-6681.rbep.101i258.4279. [GS Search]
Thompson, N., & McGill, T. J. (2017). Genetics with jean: the design, development and evaluation of an affective tutoring system. Educational Technology Research and Development, 65, 279–299. http://doi.org/10.1007/s11423-016-9470-5. [GS Search]
Todorov, J. C., & Moreira, M. B. (2005). O conceito de motivação na psicologia. Revista Brasileira de Terapia Comportamental e Cognitiva, 7(1), 119-132. http://doi.org/10.31505/rbtcc.v7i1.47. [GS Search]
Tsai, T.-W., Lo, H. Y., & Chen, K.-S. (2012). An affective computing approach to develop the game-based adaptive learning material for the elementary students. In roceedings of the 2012 joint International Conference on Human-centered Computer Environments. http://doi.org/10.1145/2160749.2160752. [GS Search]
Wang, C.-H., & Lin, H.-C. K. (2018). Emotional Design Tutoring System Based on Multimodal Affective Computing Techniques. International Journal of Distance Education Technologies (IJDET), 16(1), 103–117. http://doi.org/10.4018/IJDET.2018010106. [GS Search]
Weiner, B. (1972). Attribution theory, achievement motivation, and the educational process. Review of Educational Research, 42(2), 203-215. http://doi.org/10.3102/00346543042002203. [GS Search]
Woolf, B. P. (2010). Building Intelligent Interactive Tutors: Student-centered Strategies for Revolutionizing E-learning. Morgan Kaufmann. [GS Search]
Woolf, B. P., Arroyo, I., Muldner, K., Burleson, W., Cooper, D. G., Dolan, R. P., & Christopherson, R. (2010). The Effect of Motivational Learning Companions on Low Achieving Students and Students with Disabilities. In International Conference on Intelligent Tutoring Systems. http://doi.org/10.1007/978-3-642-13388-6_37. [GS Search]
Wu, C.-H., Huang, Y.-M., & Hwang, J.-P. (2016). Review of affective computing in education/learning: Trends and challenges. British Journal of Educational Technology, 47(6), 1304–1323. http://doi.org/10.1111/bjet.12324. [GS Search]
Zatarain Cabada, R., Barrón Estrada, M. L., Ríos Félix, J. M., & Alor Hernández, G. (2020). A virtual environment for learning computer coding using gamification and emotion recognition. Interactive learning environments, 28(8), 1048–1063. http://doi.org/10.1080/10494820.2018.1558256. [GS Search]
Arquivos adicionais
Published
Como Citar
Issue
Section
Licença
Copyright (c) 2024 Tuane Lima, Patrícia Augustin Jaques, Felipe de Morais
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.