Technical and tactical factors of an educational platform aiming to deal with a large number of students and inequalities when teaching programming for STEM students
DOI:
https://doi.org/10.5753/rbie.2025.4479Keywords:
informatics in education, educational data mining, higher education, digital technologies, programming education, introductory programming, digital equity, computer science educationAbstract
Considering the characteristics found in the post-pandemic scenario of public higher education in Brazil, we must address issues related to equity in access to educational resources. In STEM (Science, Technology, Engineering and Mathematics) courses, these differences become striking regarding the conditions and resources for extra-class study that the student can count on. Machine Teaching is a web-based system used in introductory programming classes to support students and instructors and has been used since 2018 in Universidade Federal do Rio de Janeiro. In this work, we present the challenges faced to adapt Machine Teaching to the post-pandemic scenario. Issues of equity in access were addressed in three ways: changes to the system architecture, optimization of page loading times, and actions to improve user satisfaction. Our novel implementation allows students to undertake exercises from any device with internet connectivity, enabling access from low computational power machines. Also, our optimization results decreased up to 80% the web system loading time, allowing slower connections to still access the system. This work contributes to the discussion on the risks and benefits of using digital technologies in education, placing our specific scenario in the big picture of inequality of conditions in connectivity, AI and data analysis in education.
Downloads
Referências
Ainin, S., Bahri, S., & Ahmad, A. (2012). Evaluating portal performance: A study of the National Higher Education Fund Corporation (PTPTN) portal. Telematics and Informatics, 29(3), 314–323. https://doi.org/10.1016/j.tele.2011.11.004 [GS Search].
Ake-Little, E., von der Embse, N., & Dawson, D. (2020). Does class size matter in the university setting? Educational Researcher, 49(8), 595–605. https://doi.org/10.3102/0013189X20933836 [GS Search].
Araujo, L. G., Bittencourt, R., & Chavez, C. (2021). Python enhanced error feedback: Uma IDE online de apoio ao processo de ensino-aprendizagem em programação. Anais do Simpósio Brasileiro de Educação em Computação, 326–333. https://doi.org/10.5753/educomp.2021.14500 [GS Search].
Baker, P. J., Bakshis, R., & Tolone, W. (1974). Diversifying learning opportunities: A response to the problems of mass education. Research in Higher Education, 2, 251–263. https://doi.org/10.1007/BF00991169 [GS Search].
Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(42). https://doi.org/10.1186/s41239-020-00218-x [GS Search].
Beal, A. (2005). Segurança da informação: Princípios e melhores práticas para a proteção dos ativos de informação nas organizações (1st ed.). Atlas. [GS Search].
Bez, J. L., Ferreira, C. E., & Tonin, N. (2013). URI Online Judge Academic: A Tool for Professors. Proceedings of the 2013 International Conference on Advanced ICT and Education, 744–747. https://doi.org/10.2991/icaicte.2013.153 [GS Search].
Borenstein, J., & Howard, A. (2021). Emerging challenges in AI and the need for AI ethics education. AI and Ethics, 1, 61–65. https://doi.org/10.1007/s43681-020-00002-7 [GS Search].
Castioni, R., Melo, A. A. S., Nascimento, P. M., & Ramos, D. L. (2021). Universidades federais na pandemia da covid-19: Acesso discente à internet e ensino remoto emergencial. Ensaio: Avaliação e Políticas Públicas em Educação, 29(111), 399–419. https://doi.org/10.1590/S0104-40362021002903108 [GS Search].
Cunha, J. K. A., Oliveira, B. R., & Fernandes, N. R. (2023). Assistência estudantil na educação superior: A trajetória do programa nacional de assistência estudantil na Universidade Federal de Ouro Preto. Revista Tempos e Espaços em Educação, 16(35), e18808. https://doi.org/10.20952/revtee.v16i35.18808 [GS Search].
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 [GS Search].
de Mast, J., & Lokkerbol, J. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604–614. https://doi.org/10.1016/j.ijpe.2012.05.035 [GS Search].
Delgado, C., Silva, J., Mascarenhas, F., & Duboc, A. (2016). The teaching of functions as the first step to learn imperative programming. Anais do XXIV Workshop sobre Educação em Computação, 2393–2402. https://doi.org/10.5753/wei.2016.9683 [GS Search].
Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748 [GS Search].
Edwards, S. H., & Perez-Quinones, M. A. (2008). Web-CAT: Automatically grading programming assignments. Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science Education, 328. https://doi.org/10.1145/1384271.1384371 [GS Search].
Edwards, S. H., Tilden, D. S., & Allevato, A. (2014). Pythy: Improving the introductory Python programming experience. Proceedings of the 45th ACM Technical Symposium on Computer Science Education, 641–646. https://doi.org/10.1145/2538862.2538977 [GS Search].
Freire, J. P., Landim, F. M. P. F., Moraes, L. O., Delgado, C. A. D. M., & Pedreira, C. E. (2024). Modelo para previsão precoce de abandono de uma disciplina de introdução à programação. Anais do XXXII Workshop sobre Educação em Computação, 635–645. https://doi.org/10.5753/wei.2024.2526 [GS Search].
Galvão, L., Fernandes, D., & Gadelha, B. (2016). Juiz online como ferramenta de apoio a uma metodologia de ensino híbrido em programação. Anais do XXVII Simpósio Brasileiro de Informática na Educação (SBIE 2016), 140–149. [Link] [GS Search].
Gomes, C. A. (2005). A escola de qualidade para todos: Abrindo as camadas da cebola. Ensaio: Avaliação e Políticas Públicas em Educação, 13(48), 281–306. https://doi.org/10.1590/S0104-40362005000300002 [GS Search].
Heriăko, T., Čučko, Š., Šumak, B., & Brdnik, S. (2021). Web performance tuning of wordpress-based websites through automatic image optimization. Proceedings of the Central European Conference on Information and Intelligent Systems, 343–350. [Link] [GS Search].
Hipólito, J., Shirai, L. T., Diele-Viegas, L. M., Halinski, R., Pires, C. S. S., & Fontes, E. M. G. (2022). Brazilian budget cuts further threaten gender equality in research. Nature Ecology & Evolution, 6, 234. https://doi.org/10.1038/s41559-021-01640-8 [GS Search].
Hovemeyer, D., & Spacco, J. (2013). Cloudcoder: A web-based programming exercise system. Journal of Computing Sciences in Colleges, 28(3), 30. https://doi.org/10.1145/2493394.2493401 [GS Search].
Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C., & Toll, D. (2015). Educational Data Mining and Learning Analytics in Programming: Literature Review and Case Studies. Proceedings of the 2015 ITiCSE on Working Group Reports, 41–63. https://doi.org/10.1145/2858796.2858798 [GS Search].
Lima, M. E. O., Costa Neves, P. S., & Silva, P. B. (2014). A implantação de cotas na universidade: paternalismo e ameaça à posição dos grupos dominantes. Revista Brasileira de Educação, 19(56), 141–163. [Link] [GS Search].
Lima Neto, N. (2012). Desafios da educação superior brasileira para a próxima década. In UNESCO Office, Brasilia; National Education Council, Brazil. Ministry of Education, Brasil (Ed.), Desafios e perspectivas da educação superior brasileira para a próxima década, 2011-2020 (pp. 37–44). UNESCO Office Brasilia/CNE/MEC. [Link] [GS Search].
Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory programming: A systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, 55–106. https://doi.org/10.1145/3293881.3295779 [GS Search].
Mitchell, D., Carson, C., & Badarak, G. (1990). How Changing Class Size Affects Classrooms and Students. Policy Briefs Number 12. [Link] [GS Search].
Moraes, L. O., Delgado, C. A. D. M., Freire, J. P., & Pedreira, C. E. (2022). Machine teaching: Uma ferramenta didática e de análise de dados para suporte a cursos introdutórios de programação. Anais do II Simpósio Brasileiro de Educação em Computação, 213–223. https://doi.org/10.5753/educomp.2022.19216 [GS Search].
Moraes, L. O., & Pedreira, C. E. (2020). Designing an intelligent tutoring system across multiple classes. 4th Educational Data Mining in Computer Science Education Workshop. [Link] [GS Search].
Moraes, L. O., Pedreira, C. E., Delgado, C., & Freire, J. P. (2021). Supporting decisions using educational data analysis. Anais Estendidos do XXVII Simpósio Brasileiro de Sistemas Multimídia e Web, 99–102. https://doi.org/10.5753/webmedia_estendido.2021.17622 [GS Search].
Özer, M. (2024). Potential Benefits and Risks of Artificial Intelligence in Education. Bartın University Journal of Faculty of Education, 13(2), 232-244. https://doi.org/10.14686/buefad.1416087 [GS Search].
Panamalai Murali, K. (2016, June). CodeWorkout: Design and implementation of an online drill-and-practice system for introductory programming [Thesis]. Virginia Tech. [Link] [GS Search].
Papancea, A., Spacco, J., & Hovemeyer, D. (2013). An open platform for managing short programming exercises. Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research, 47–52. https://doi.org/10.1145/2493394.2493401 [GS Search].
Paulilo, A. L. (2017). A compreensão histórica do fracasso escolar no Brasil. Cadernos de Pesquisa, 47(166), 1252–1267. https://doi.org/10.1590/198053144445 [GS Search].
Rodrigues, A., & Chechia, V. A. (2017). O fracasso escolar e suas implicações no processo de ensino e de aprendizagem. Psicologia - Saberes & Práticas, 1(1), 29– 36. [Link] [GS Search].
Sasse, A. M., Moraes, L. O., Delgado, C. A. D. M., & Pedreira, C. E. (2024). Analisando a efetividade da formação de clusters na avaliação de exercícios de programação. Anais do IV Simpósio Brasileiro de Educação em Computação, 325–335. https://doi.org/10.5753/educomp.2024.237380 [GS Search].
Scarpin, J. E., Mondini, V. E. D., & Scarpin, M. R. S. (2018). Technology acceptance factors and student retention in online courses. E-Journal of Business Education and Scholarship of Teaching, 12(3), 44–68. [Link] [GS Search].
Siahaan, M., & Vianto, V. O. (2022). Comparative Analysis Study of Front-End JavaScript Frameworks Performance Using Lighthouse Tool. Jurnal Mantik, 6(3), 2462–2468. [Link] [GS Search].
Sorva, J., & Sirkiä, T. (2010). UUhistle: A software tool for visual program simulation. Proceedings of the 10th Koli Calling International Conference on Computing Education Research, 49–54. https://doi.org/10.1145/1930464.1930471 [GS Search].
Tonin, N., Zanin, F., & Bez, J. L. (2012). Enhancing traditional Algorithms classes using URI On-line Judge. 2012 International Conference on e-Learning and e-Technologies in Education (ICEEE), 110–113. https://doi.org/10.1109/ICeLeTE.2012.6333402 [GS Search].
Trow, M. (2007). Reflections on the Transition from Elite to Mass to Universal Access: Forms and Phases of Higher Education in Modern Societies since WWII. In J. J. F. Forest & P. G. Altbach (Eds.), International handbook of higher education (pp. 243–280). Springer Netherlands. https://doi.org/10.1007/978-1-4020-4012-2_13 [GS Search].
Xará, G., Moraes, L. O., Delgado, C. A. D. M., Freire, J. P., & Farias, C. M. (2023). Dealing with a large number of students and inequality when teaching programming in higher education. Anais do XXIX Workshop de Informática na Escola, 1230– 1242. https://doi.org/10.5753/wie.2023.235057 [GS Search].
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(39). https://doi.org/10.1186/s41239-019-0171-0 [GS Search].
Zingaro, D., Cherenkova, Y., Karpova, O., & Petersen, A. (2013). Facilitating code-writing in PI classes. Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 585–590. https://doi.org/10.1145/2445196.2445369 [GS Search].
Arquivos adicionais
Published
Como Citar
Issue
Section
Licença
Copyright (c) 2025 Gabriel Xará, Carla A. D. M. Delgado, Claudio M. de Farias, Hugo Folloni Guarilha, Laura O. Moraes, João Pedro Freire, Eldânae Nogueira Teixeira

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

