Predictive system for failure of basic education student

Authors

DOI:

https://doi.org/10.5753/rbie.2025.5127

Keywords:

Artificial Intelligence, Predictive Models, Educational Data Mining, Failure Prediction, Supervised Classification

Abstract

Academic performance measures how students are doing according to the study plan proposed by schools. Educational performance is a crucial factor in education, making it important to develop a system that can indicate if a student is at risk of failing. This work discusses the development of a student failure prediction system for basic education using a dataset of about three million records of students' assessment grades from schools in Brazil. The system's primary objective is to identify students at risk of failing and provide indications to educators in search of preventing students' failure. The system architecture uses historical data from Middle and Basic Secondary Education students' assessments to predict approval or failure outcomes. Classification algorithms, including K-Nearest Neighbors, Decision Tree, Random Forest, and eXtreme Gradient Boosting, were applied for the system development, creating machine learning models. Results of model evaluations indicated that Random Forest and eXtreme Gradient Boosting showed the best performances. The final system utilizes eXtreme Gradient Boosting to create the predictive models due to its consistent performance and computational efficiency, achieving approximately 86% accuracy and F1-Score. These findings are implemented in a Business Intelligence Panel to empower educators to identify and assist students at risk of academic failure proactively.

Downloads

Não há dados estatísticos.

Referências

Alalawi, K., Athauda, R., Chiong, R., & Renner, I. (2024). Evaluating the student performance prediction and action framework through a learning analytics intervention study. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12923-5. [GS Search]

Albreiki, B., Zaki, N., & Alashwal, H. (2021). A systematic literature review of student’ performance prediction using machine learning techniques. Education Sciences, 11(9). https://doi.org/10.3390/educsci11090552. [GS Search]

Al-Tameemi, R. A. N., Johnson, C., Gitay, R., Abdel-Salam, A.-S. G., Hazaa, K. A., BenSaid, A., & Romanowski, M. H. (2023). Determinants of poor academic performance among undergraduate students—a systematic literature review. International Journal of Educational Research Open, 4, 100232. https://doi.org/10.1016/j.ijedro.2023.100232. [GS Search]

Amal Asselman, M. K., & Aammou, S. (2021). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235. [GS Search]

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305. [link]. [GS Search]

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.-L., Deng, D., & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices and open challenges. WIREs Data Mining and Knowledge Discovery, 13(2), e1484. https://doi.org/10.1002/widm.1484. [GS Search]

Byrd, R. S. (2005). School failure: Assessment, intervention, and prevention in primary pediatric care. Pediatrics in Review, 26(7), 233–243. https://doi.org/10.1542/pir.26-7-233. [GS Search]

Chanlekha, H., & Niramitranon, J. (2018). Student performance prediction model for early-identification of at-risk students. MEDES ’18, 239–245. https://doi.org/10.1145/3281375.3281403. [GS Search]

Crosnoe, R. (2002). High school curriculum track and adolescent association with delinquent friends. Journal of Adolescent Research, 17, 143–167. https://doi.org/10.1177/0743558402172003. [GS Search]

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54. https://doi.org/10.1609/aimag.v17i3.1230. [GS Search]

Giavrimis, P., & Papanis, E. (2008). Sociological dimensions of school failure. The Journal of International Social Research, 1(5), 326–354. [link]. [GS Search]

Hart, A. (2001). Mann-Whitney test is not just a test of medians. BMJ, 323(7309), 391–393. https://doi.org/10.1136/bmj.323.7309.391. [GS Search]

Javed, D., Jhanjhi, N. Z., Ashfaq, F., Khan, N. A., Das, S. R., & Singh, S. (2024). Student performance analysis to identify the students at risk of failure. ETNCC 2024, 1–6. https://doi.org/10.1109/ETNCC63262.2024.10767511. [GS Search]

Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining, 15(4), 531–538. https://doi.org/10.1002/sam.11583. [GS Search]

Kamal, M., & Bener, A. (2009). Factors contributing to school failure. Oman Medical Journal, 24(3), 212–217. https://doi.org/10.5001/omj.2009.42. [GS Search]

Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm. https://doi.org/10.48550/arXiv.1912.06059. [GS Search]

Ouatik, F., Erritali, M., Ouatik, F., & Jourhmane, M. (2022). Predicting student success using big data. iJET, 17(12), 236–251. https://doi.org/10.3991/ijet.v17i12.30259. [GS Search]

Rodrigues, L. S., Santos, M., Gomes, C. F. S., Choren, R., Goldschmidt, R., & Barbará, S. (2024). Transformers para previsão de desempenho acadêmico no ensino fundamental e médio. Revista Brasileira de Informática na Educação, 32, 213–241. https://doi.org/10.5753/rbie.2024.3661. [GS Search]

Siddique, A., Jan, A., Majeed, F., Qahmash, A., Quadri, N. N., & Wahab, M. (2021). Predicting academic performance using an efficient model based on fusion of classifiers. Applied Sciences, 11, 11845. https://doi.org/10.3390/app112411845. [GS Search]

Silva, P., Souza, F., & Fagundes, R. (2020). Approaches to predicting educational problems: A systematic mapping. Proceedings of the XVI Brazilian Symposium on Information Systems. https://doi.org/10.1145/3411564.3411657. [GS Search]

Simanca, F., Gonzalez Crespo, R., Rodríguez-Baena, L., & Burgos, D. (2019). Identifying students at risk of failing a subject by using learning analytics for subsequent customised tutoring. Applied Sciences, 9(3), 448. https://doi.org/10.3390/app9030448. [GS Search]

Singh, R., & Pal, S. (2020). Machine learning algorithms and ensemble technique to improve prediction of students performance. IJATCSE, 9, 3970–3976. https://doi.org/10.30534/ijatcse/2020/221932020. [GS Search]

Sunny, B. S., Elze, M., Chihana, M., Gondwe, L., Crampin, A. C., Munkhondya, M., Kondowe, S., & Glynn, J. R. (2017). Failing to progress or progressing to fail? International Journal of Educational Development, 52, 68–80. https://doi.org/10.1016/j.ijedudev.2016.10.004. [GS Search]

UNICEF Brasil, Instituto Claro & Cenpec. (2021, January). Enfrentamento da cultura do fracasso escolar. [link].

Vujovic, Z. (2021). Classification model evaluation metrics. IJACSA, 12(6), 599–606. https://doi.org/10.14569/IJACSA.2021.0120670. [GS Search]

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061. [GS Search]

Arquivos adicionais

Published

2025-05-21

Como Citar

SANTOS, B. D. R. dos; OLIVEIRA, M. C.; LOPES, D. A. F.; FRAGOSO, R. S. de M.; SANTOS NETO, B. F. dos. Predictive system for failure of basic education student. Revista Brasileira de Informática na Educação, [S. l.], v. 33, p. 394–416, 2025. DOI: 10.5753/rbie.2025.5127. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/5127. Acesso em: 5 dez. 2025.

Issue

Section

Edição Especial :: Políticas, Qualidade, Desenvolvimento Tecnológico e Inovação

Artigos mais lidos pelo mesmo(s) autor(es)