Designing an Academic Software Factory for AI-Based Systems Development from Professors' Perspectives
DOI:
https://doi.org/10.5753/rbie.2025.5647Keywords:
Academic Software Factory, AI-Based Systems, Software Engineering, SurveyAbstract
The increasing complexity of AI-based systems poses significant challenges in software engineering education, requiring an integrated approach that combines AI techniques with software development methodologies. Traditional educational models often fail to bridge this gap, limiting students' ability to apply theoretical knowledge to real-world AI-driven software solutions. This paper proposes the design of an Academic Software Factory (ASF) tailored for AI-based systems development within undergraduate software engineering education. The proposed ASF integrates Competency-Based Learning, Bloom’s Taxonomy, and Agile Scrum methodologies to provide a structured and industry-aligned learning experience. The ASF framework is developed through a four-phase methodology: (i) identifying characteristics and roles in AI-based system development, (ii) designing the ASF curriculum, (iii) defining a teaching methodology aligned with AI-specific software engineering challenges, and (iv) evaluating the ASF design through expert validation. A survey was conducted with ten professors specializing in software engineering and AI for preliminary validation. The feedback highlighted the ASF's potential to enhance educational outcomes, suggesting refinements such as assigning specialist roles to faculty members, reducing redundancy in pre-existing content, and emphasizing developing and presenting a minimum viable product as a key learning outcome.
Downloads
Referências
Ahmad, M. O., Liukkunen, K., & Markkula, J. (2014). Student perceptions and attitudes towards the software factory as a learning environment. 2014 IEEE Global Engineering Education Conference (EDUCON), 422–428. https://doi.org/10.1109/EDUCON.2014.6826129 [GS Search].
Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives complete edition (2nd ed.). Longman. [GS Search].
Anthes, G. (2017). Artificial intelligence poised to ride a new wave. Commun. ACM, 60(7), 19–21. https://doi.org/10.1145/3088342 [GS Search].
Ardis, M., Budgen, D., Hislop, G. W., Offutt, J., Sebern, M., & Visser, W. (2015). SE 2014: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering. Computer, 48(11), 106–109. https://doi.org/10.1109/MC.2015.345 [GS Search].
Barclay, I., & Abramson, W. (2021). Identifying roles, requirements and responsibilities in trustworthy AI systems. Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM Inter. Symp. on Wearable Computers, 264–271. https://doi.org/10.1145/3460418.3479344 [GS Search].
Bardin, L. (2011). Análise de conteúdo. São Paulo: Edições 70. [GS Search].
Bartneck, C., Lütge, C., Wagner, A., & Welsh, S. (2021). What is AI? In An introduction to ethics in robotics and ai (pp. 5–16). Springer International Publishing. https://doi.org/10.1007/978-3-030-51110-4_2 [GS Search].
Basili, V. R., & Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE Transactions on software engineering, (6), 728–738. https://doi.org/10.1109/TSE.1984.5010301 [GS Search].
Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). Springer-Verlag. [GS Search].
Borsoi, B. T. (2008, July). Arquitetura de processo aplicada na integração de fábricas de software [Doctoral dissertation, Universidade de São Paulo]. [Link] [GS Search].
Chao, J., & Randles, M. (2009). Agile software factory for student service learning. 2009 22nd Conference on Software Engineering Education and Training, 34–40. https://doi.org/10.1109/CSEET.2009.26 [GS Search].
Deshpande, A., & Sharp, H. (2022). Responsible AI systems: Who are the stakeholders? AIES ’22: 2022 AAAI/ACM Conference on AI, Ethics, and Society, 227–236. https://doi.org/10.1145/3514094.3534187 [GS Search].
Digital.ai. (2023). The 17th state of agile report. [Link].
Franch, X., Jedlitschka, A., & Martínez-Fernández, S. (2023). A requirements engineering perspective to AI-based systems development: A vision paper. Requirements Engineering: Foundation for Software Quality, 223–232. https://doi.org/10.1007/978-3-031-29786-1_15 [GS Search].
Hauck, J. C. R. (2012, October). Um método de aquisição de conhecimento para customização de modelos de capacidade/maturidade de processos de software [Doctoral dissertation, Universidade Federal de Santa Catarina]. [Link] [GS Search].
Jiang, C., Ge, N., & Kuang, L. (2020). AI-enabled next-generation communication networks: Intelligent agent and AI router. IEEE Wireless Communications, 27(6), 129–133. https://doi.org/10.1109/MWC.001.2000100 [GS Search].
Kasunic, M. (2005). Designing an effective survey. Pittsburgh: Carnegie Mellon University. [GS Search].
Kaswan, K. S., Dhatterwal, J. S., & Balyan, A. (2022). Intelligent agents based integration of machine learning and case base reasoning system. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 1477–1481. https://doi.org/10.1109/ICACITE53722.2022.9823890 [GS Search].
Khuat, T. T., Kedziora, D. J., & Gabrys, B. (2023). The roles and modes of human interactions with automated machine learning systems: A critical review and perspectives. Foundations and Trends® in Human–Computer Interaction, 17(3–4), 195–387. https://doi.org/10.1561/1100000091 [GS Search].
Kitchenham, B. A., & Pfleeger, S. L. (2008). Personal opinion surveys. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to advanced empirical software engineering (pp. 63–92). Springer London. https://doi.org/10.1007/978-1-84800-044-5 [GS Search].
Li, J. P., Haq, A. U., Din, S. U., Khan, J., Khan, A., & Saboor, A. (2020). Heart disease identification method using machine learning classification in e-healthcare. IEEE Access, 8, 107562–107582. https://doi.org/10.1109/ACCESS.2020.3001149 [GS Search].
Likert, R. (1932). A technique for the measurement of attitudes. Journal Archives of Psychology, 22(40), 1–55. [GS Search].
Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A., Vollmer, A. M., & Wagner, S. (2022). Software engineering for AI-based systems: A survey. ACM Trans. Softw. Eng. Methodol., 31(2). https://doi.org/10.1145/3487043 [GS Search].
Masapanta-Carrión, S., & Velázquez-Iturbide, J. (2017). Una revisión sistemática del uso de la taxonomía de bloom en la enseñanza de la informática. Atas do XIX Simposio Internacional de Informatica Educativa e VIII Encontro do CIED–III Encontro Internacional, 294–297. [GS Search].
Momen, A., Ebrahimi, M., & Hassan, A. M. (2022). Importance and implications of theory of bloom’s taxonomy in different fields of education. International Conference on Emerging Technologies and Intelligent Systems, 515–525. https://doi.org/10.1007/978-3-031-20429-6_47 [GS Search].
Nahar, N., Zhou, S., Lewis, G., & Kästner, C. (2022). Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process. Proceedings of the 44th International Conference on Software Engineering, 413–425. https://doi.org/10.1145/3510003.3510209 [GS Search].
Oliveira, M., Oliveira, S. R. B., & Meira, S. (2017). Condução de uma fábrica de software e o processo de aprendizagem em cursos de graduação em TI: Uma aplicação de um survey sobre a percepção da importância. Anais do XXVIII Simpósio Brasileiro de Informática na Educação (SBIE), 92–101. https://doi.org/10.5753/cbie.sbie.2017.92 [GS Search].
Pei, Z., Liu, L., Wang, C., & Wang, J. (2022). Requirements engineering for machine learning: A review and reflection. 30th International Requirements Engineering Conference Workshops (REW), 166–175. https://doi.org/10.1109/REW56159.2022.00039 [GS Search].
Roegiers, X., & Ketele, J.-M. d. (2001). Une pédagogie de l’intégration: Compétences et integração des acquis dans l’enseignement. De Boeck. [GS Search].
Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
Santos, A. S., Neves, M., Rodrigues, Y., Oliveira, N. H., Kuhn, D., Santos, G., & Silva, R. A. (2021). Experiência do projeto fábrica de software em um curso de engenharia de software. Anais da V Escola Regional de Engenharia de Software (ERES), 89–98. https://doi.org/10.5753/eres.2021.14869 [GS Search].
Scallon, G. (2017). Avaliação da aprendizagem numa abordagem por competências. PUCPRess. [GS Search].
Schwaber, K., & Sutherland, J. (2020). The scrum guide the definitive guide to scrum: The rules of the game [Accessed 10 April 2024]. [Link] [GS Search].
Simon, D. (2013). Evolutionary optimization algorithms: Biologically-inspired and population-based approaches to computer intelligence. [Link] [GS Search].
Souza, F. C. M., Souza, A. C. C., Amorim, B. F., & Cordeiro, T. D. (2024). Towards role definition in agile AI-based system development: Perspectives and reflections. Proceedings of the XXIII Brazilian Symposium on Software Quality, 220–230. https://doi.org/10.1145/3701625.3701661 [GS Search].
Stol, K.-J., Ralph, P., & Fitzgerald, B. (2016). Grounded theory in software engineering research: A critical review and guidelines. Proceedings of the 38th International Conference on Software Engineering, 120–131. https://doi.org/10.1145/2884781.2884833 [GS Search].
Thiollent, M. (2005). Insertion of action-research in the context of continued university education. International Journal of Action Research, 1(1), 87–98. [GS Search].
Thompson, S. K. (2012). Sampling (3rd ed.). John Wiley Son. [GS Search].
Tvedt, J., Tesoriero, R., & Gary, K. (2001). The software factory: Combining undergraduate computer science and software engineering education. Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001, 633–642. https://doi.org/10.1109/ICSE.2001.919137 [GS Search].
Vogelsang, A., & Borg, M. (2019). Requirements engineering for machine learning: Perspectives from data scientists. 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), 245–251. https://doi.org/10.1109/REW.2019.00050 [GS Search].
Wang, X., Lunesu, I., Rikkila, J., Matta, M., & Abrahamsson, P. (2014). Self-organized learning in software factory: Experiences and lessons learned. In G. Cantone & M. Marchesi (Eds.), Agile processes in software engineering and extreme programming (pp. 126–142). Springer International Publishing. https://doi.org/10.1007/978-3-319-06862-6_9 [GS Search].
Wang, Z., Tian, J., & Feng, K. (2022). Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm. Energy Reports, 8, 9119–9126. https://doi.org/10.1016/j.egyr.2022.07.033 [GS Search].
Xie, J., Zhao, Y., Zhu, D., Yan, J., Li, J., Qiao, M., He, G., & Deng, S. (2023). A machine learning-combined flexible sensor for tactile detection and voice recognition. ACS Applied Materials & Interfaces, 15(9), 12551–12559. https://doi.org/10.1021/acsami.2c22287 [GS Search].
Zhou, G., Zhu, Z., & Luo, S. (2022). Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy, 247, 123437. https://doi.org/10.1016/j.energy.2022.123437 [GS Search].
Arquivos adicionais
Published
Como Citar
Issue
Section
Licença
Copyright (c) 2025 Alinne C. Corrêa Souza, Francisco Carlos Monteiro Souza, Thiago Damasceno Cordeiro

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

