Development and Evaluation of an Example-Based Interactive Tool for Learning System Modeling Using Petri Nets
DOI:
https://doi.org/10.5753/rbie.2021.2072Keywords:
Learning, Modeling, Petri net, ToolAbstract
Computational systems have become increasingly complex and this has required the development of techniques to guarantee certain characteristics such as high availability and low cost. Thus, the interest in the use of computational models has increased in recent years, given that they can be used in situations where it is very expensive or even impossible to test or measure the various characteristics of computer systems (e.g. availability or reliability). However, a great challenge in the use of such models is their understanding, since they are not intuitive and require a considerable effort to learn the notation used. Often, the lecture approach in the classroom, in computer science majors, is insufficient to guarantee the learning of computational modeling. Interactive educational tools based on examples can assist learning through exercise and practice. This work addresses the development and evaluation of TryRdP, a free, interactive and example-based web tool to assist the learning of computational modeling using Petri Nets, a content that integrates curricula in computer science, computer engineering and others courses. Petri Nets are mathematical formalisms widely used to model, analyze and design diverse systems, including computer systems. In order to evaluate the effectiveness of the tool, experiments were carried out with students and professors from higher education computer science majors, investigating usability and utility of the tool in supporting the learning of computational modeling. Overall, the results indicate that the tool meets the main requirements of usability and was well evaluated regarding its didactic-pedagogical application.
Downloads
References
Andrade, E., Nogueira, B., Matos, R., Callou, G., & Maciel, P. (2017). Availability modeling and analysis of a disaster-recovery as-a-service solution. J Grid Computing, 17, 603–621. DOI: 10.1007/s10723-018-9446-2 [GS Search]
Andrade, E. C., Alves, M., Nogueira, B., & Maciel, P. (2012). Calau: An environment for modeling and analyzing embedded real-time systems. In: Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference, pages 3135–3140. DOI: 10.1109/ICSMC.2012.6378273 [GS Search]
Arteiro, R. D., Souza, F. N., Rosa, N. S., & Maciel, P. R. M. (2007). Utilizando redes de Petri para modelagem de desempenho de middleware orientado a mensagem. In: XXVII Congresso da SBC. [GS Search]
Bennetts, R. (1975). On the analysis of fault trees. IEEE Transactions on reliability, 24(3):175–185. DOI: 10.1109/TR.1975.5215143 [GS Search]
Bucci, G., Carnevali, L., Ridi, L., & Vicario, E. (2010). Oris: a tool for modeling, verification and evaluation of real-time systems. Int J Softw Tools Technol Transfer, 12, 391–403. DOI: 10.1007/s10009-010-0156-8 [GS Search]
Cavalcanti, T. C., Kim S., Lee K., Lee S-Y., Park M. K., & Hwang J. Y. (2020). Smartphone-based spectral imaging otoscope: System development and preliminary study for evaluation of its potential as a mobile diagnostic tool. J. Biophotonics, 13:e201960213. DOI: 10.1002/jbio.201960213 [GS Search]
Cerqueira, R. G., & Silva, V. C. (2009). Aprendendo conceitos de computação gráfica através de um ambiente multimídia e interativo com OpenGL. Anais do Workshop de Informática na Escola, pp. 1733-1742. ISSN 2316-6541. [GS Search]
Chiola, G., Marsan, M. A., Balbo, G., & Conte, G. (1993). Generalized Stochastic Petri Nets: A Definition at the Net Level and Its Implications. IEEE Trans. Software Eng., 19, 89-107. DOI: 10.1109/32.214828 [GS Search]
Costa, D., Teixeira, D., Grisotto, R., & Rocha, B. (2017). Lpt: ferramenta educacional para auxiliar o ensino/aprendizagem de traduções de diferentes níveis de linguagens de programação. In: Anais do Workshop de Informática na Escola, 23, page 695. DOI: 10.5753/cbie.wie.2017.695 [GS Search]
Dietz, J., Chompalov, I., Bozeman, B., Lane, E., & Park, J. (2000). Using the Curriculum Vita to Study the Career Paths of Scientists and Engineers: An Exploratory Assessment. Scientometrics, 49(3), 419-442. DOI: 10.1023/a:1010537606969 [GS Search]
Distefano, S., Paci, D., Puliafito, A., Scarpa, M., Papardo, C., & Sperone, S. (2005). Design and implementation of a performance plug-in for the argouml tool. In IASTED Conf. on Software Engineering, pages 337–342. [GS Search]
Falani, L., Aguiar, C., & Forno, A. (2020). Mapeamento da literatura sobre as tecnologias da indústria 4.0 no segmento têxtil brasileiro. Brazilian Journal of Development, 6, 42437-42452. DOI: 10.34117/bjdv6n7-019 [GS Search]
Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems, 78. 10.1016/j.future.2017.04.036. DOI: 10.1016/j.future.2017.04.036 [GS Search]
Gómez-Martínez, E., & Merseguer, J. (2006). ArgoSPE: Model-based software performance engineering. In: Petri Nets and Other Models of Concurrency-ICATPN 2006, pages 401–410. DOI: 10.1007/11767589_23 [GS Search]
Hirel, C., Sahner, R., Zang, X., & Trivedi, K. (2000a). Reliability and performability modeling using sharpe. In: International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, pages 345–349. Springer. DOI: 10.1007/3-540-46429-8_28 [GS Search]
Hirel, C., Tuffin, B., & Trivedi, K. (2000b). SPNP: Stochastic petri nets. Version 6.0. Lecture Notes in Computer Science, 1786, 354-357. [GS Search]
Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5:3, 299-314. DOI: 10.1080/10618600.1996.10474713 [GS Search]
Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert Scale: Explored and Explained. Current Journal of Applied Science and Technology, 7(4), 396-403. DOI: 10.9734/BJAST/2015/14975 [GS Search]
Junior, O., & Aguiar, Y. P. C. (2018). Taxonomia de critérios para avaliaçao de software educativo-tacase. In: Simpósio Brasileiro de Informática na Educação, 29(1), pp. 298-307. DOI: 10.5753/cbie.sbie.2018.298 [GS Search]
Kormann, H., & Suberg, B. (2021). Innovation Strategy for Renewal and Growth. In: Kormann H., Suberg B. (eds) Topics of Family Business Governance. Management for Professionals. Springer, Cham. DOI: 10.1007/978-3-030-58019-3_15 [GS Search]
KPMG. (2020). COVID-19 forces one of the biggest surges in tech investment in history, finds world’s largest tech leadership survey. Retrieved March 20, 2021, from [link].
Lima, J. W. S., Callou, G. R. A., & Andrade, E. C. (2021a). Teoria de Filas e Rede de Petri Estocástica: Um tutorial. Research, Society and Development, 10, p. e2810312826. DOI: 10.33448/rsd-v10i3.12826 [GS Search]
Lima, J. W. S., Falcão, T. P., & Andrade, E. C. (2021b). TryRdP: uma Ferramenta para o Aprendizado de Modelagem de Sistemas usando Redes de Petri. In: Anais do Simpósio Brasileiro de Educação em Computação, pp. 362-370. SBC. DOI: 10.5753/educomp.2021.14504 [GS Search]
Maciel, P., Lins, R., & Cunha, P. (1996). Uma Introdução às Redes de Petri e Aplicações. Campinas, SP: Sociedade Brasileira de Computacão, v. 1. 213 p. [GS Search]
Marcolino, M., Oliveira, J., D'Agostino, M., Ribeiro, A. L., Alkmim, M., & Novillo-Ortiz, D. (2018). The Impact of mHealth Interventions: Systematic Review of Systematic Reviews. JMIR mHealth and uHealth, 6, e23. DOI: 10.2196/mhealth.8873 [GS Search]
Marsan, M. A., Conte, G., & Balbo, G. (1984). A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM Trans. Comput. Syst., 2, 93-122. DOI: 10.1145/190.191 [GS Search]
Mei, H., Dong, X., Wang, Y., Tang, L., & Hu, Y. (2020). Managing patients with cancer during the COVID-19 pandemic: frontline experience from Wuhan. The Lancet. Oncology, 21(5), 634–636. DOI: 10.1016/S1470-2045(20)30238-2 [GS Search]
Mo, P. et al. (2020). Clinical Characteristics of Refractory COVID-19 Pneumonia in Wuhan, China. Clinical Infectious Diseases, ciaa270. DOI: 10.1093/cid/ciaa270 [GS Search]
Murata, T. (1989). Petri nets: Properties, analysis and applications. In: Proceedings of the IEEE, 77(4), 541-580. DOI: 10.1109/5.24143 [GS Search]
Murata, T. (1984). Petri Nets and their Application an Introduction. In: Chang SK. (eds) Management and Office Information Systems. Springer, Boston, MA. [GS Search]
Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems, 152-158. DOI: 10.1007/978-1-4613-2677-9_20 [GS Search]
OECD/Eurostat (2005), Oslo Manual, Guidelines for Collecting and Interpreting Innovation Data, Paris: OECD. DOI: 10.1787/19900414 [GS Search]
Oliveira, C. C., Costa, J. W., & Moreira, M. (2001). Ambientes Informatizados de Aprendizagem: Produção e Avaliação de software Educativo. Campinas, SP: Papirus. [GS Search]
Raabe, A. L. A., & Bombasar, J. R. (2020). Mensuração e testes em Informática na Educação. In: JAQUES, Patrícia Augustin; SIQUEIRA; Sean; BITTENCOURT, Ig; PIMENTEL, Mariano. (Org.) Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa. Porto Alegre: SBC. (Série Metodologia de Pesquisa em Informática na Educação, v. 2) Disponível em: . [GS Search]
Rho, S., Vasilakos, A., & Chen, W. (2016). Cyber physical systems technologies and applications. Future Generation Computer Systems, 56. DOI: 10.1016/j.future.2015.10.019 [GS Search]
Rossiter, D. (2018). Past, present & future of information technology in pedometrics. Geoderma. DOI: 10.1016/j.geoderma.2018.03.009 [GS Search]
Rugina, A. E., Kanoun, K., & Kaâniche, M. (2008). The adapt tool: From aadl architectural models to stochastic petri nets through model transformation. In: Dependable Computing Conference, 2008. EDCC 2008. Seventh European, pages 85–90. IEEE. DOI: 10.1109/EDCC-7.2008.14 [GS Search]
Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J., Junior, A., Alves, V., & Maciel, P. (2015). Mercury: An integrated environment for performance and dependability evaluation of general systems. In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN). [GS Search]
Tech Monitor. (2020). CIOs Wielding More Influence in the Boardroom as IT Spending Surges by $15 Billion a Week. Retrieved March 20, 2021, from https://techmonitor.ai/techonology/data/cio-survey-2020-kpmg.
Triola, M. F. (2017). Introdução à Estatística. 12a Edição. Editora LTC. [GS Search]
Trivedi, K. S. (2008). Probability & Statistics with Reliability, Queuing and Computer Science Applications. John Wiley & Sons. [GS Search]
Trivedi, K., Andrade, E., & Machida, F. (2012). Combining performance and availability analysis in practice. Advances in Computers, 84. Elsevier. [GS Search]
U.S. Bureau of Labor Statistics. (2013). Economic News Releases: Employment Projections. Retrieved March 20, 2021, from https://www.bls.gov/opub/btn/volume-2/careers-in-growing-field-of-information-technology-services.htm#ednref4.
U.S. Bureau of Labor Statistics. (2020). Economic News Releases: Employment Projections. Retrieved March 20, 2021, from https://www.bls.gov/bls/newsrels.htm#OEP.
Valente, J. A. (2000). Informática na educação: instrucionismo x construcionismo. Revista Educação Pública. ISSN: 1984-6290. [GS Search]
Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147-2152. [GS Search]
Zimmermann, A. (2017). Modelling and Performance Evaluation with TimeNET 4.4. In: Bertrand N., Bortolussi L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science, vol 10503. Springer, Cham. [GS Search]
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 John Wesley Soares de Lima, Taciana Pontual Falcão, Ermeson Andrade
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.