Mining Concept Map from Text in Portuguese
DOI:
https://doi.org/10.5753/rbie.2019.27.01.83Keywords:
concept map, automatic summarization, concept map miningAbstract
Concept maps are graphical tools for representation and construction of knowledge. The manual construction of a concept map requires time and cognitive effort, this being increased when the map should not represent the cognitive structure of the author, but rather, the information expressed in a text written by another author. Therefore, we propose a computational approach for concept map mining from texts in Portuguese that aims to represent the text in summary form through concepts and relationships. To this end, we define a technological architecture that includes the services of: (i) text formatting, removing characters and designing of the text; (ii) domain identification, information retrieval techniques to identify the domain to which refers the text; (iii) elements extractor, natural language processing techniques on the text to extract concept-relation-concept propositions; (iv) element summarizer, supported by graph analysis to identify the relevant concepts on the map; and (v) map visualization, presentation of the propositions in graphic form. The approach developed presents satisfactory results and contributes exceptionally to the summarization of texts to identify the relevant concepts of the text while maintaining its several and most important characteristics. Furthermore, this research introduces the specification of a project to provide computational resources for processing, handling and extraction of conceptual maps.
Downloads
References
Afonso, S., Bick, E., Haber, R., & Santos, D. (2002). Floresta sintá(c)tica: a treebank for Portuguese. LREC'2002, (pp. 1698-1703). Paris. Retrieved from [Link]. [GS SEARCH].
Aguiar, C. Z., & Cury, D. (2017). Mineração de Mapas Conceituais a partir de Textos em Português. Simpósio Brasileiro de Informática na Educação-SBIE, 28. Retrieved from [Link]. doi: 10.5753/cbie.sbie.2017.1117. [GS SEARCH].
Aguiar, C. Z., Cury, D., & Zouaq, A. (2016). Automatic Construction of Concept Maps from Texts. Conference on Concept Mapping - CMC. Tallinn. Retrieved from [Link]. [GS SEARCH].
Aguiar, C. Z., Cury, D., & Zouaq, A. (2017). Mineração de Mapas Conceituais para Sumarização de Textos. Workshops do Congresso Brasileiro de Informática na Educação, 6. Retrieved from [Link]. doi: 10.5753/cbie.wcbie.2017.57. [GS SEARCH].
Aguiar, C. Z., Cury, D., & Zouaq, A. (2018). Towards Technological Approaches for Concept Maps Mining from Text. CLEI Electronic Journal, 21, 7. Retrieved from [Link]. doi: 10.19153/cleiej.21.1.7.
Branco, A. e. (2010). Developing a Deep Linguistic Databank Supporting a Collection of Treebanks: the CINTIL DeepGramBank. In: LREC. Retrieved from [Link]. [GS SEARCH].
Chen, N.-S., Wei, C.-W., & Chen, H.-J. (2008). Mining e-Learning domain concept map from academic articles. 50, 1009-1021. Retrieved from [Link]. doi: 10.1016/j.compedu.2006.10.001. [GS SEARCH].
De La Villa, M., Aparicio, F., Maña, M. J., & De Buenaga, M. (2012). A learning support tool with clinical cases based on concept maps and medical entity recognition. ACM international conference on Intelligent User Interfaces. ACM. Retrieved from [Link]. doi: 10.1145/2166966.2166978. [GS SEARCH].
Fonseca, E. R., & Rosa, J. L. (2013). Mac-Morpho revisited: Towards robust part-of-speech tagging., (pp. 98-107). Retrieved from [Link]. [GS SEARCH].
Gava, T. B., Menezes, C. d., & Cury, D. (2003). Aplicações de mapas conceituais na educação como ferramenta metacognitiva. II International Conference on Engineering and Computer Education-ICECE. Retrieved from [Link]. [GS SEARCH].
Hutchins, J. (1987). Summarization: Some problems and methods. Meaning: The frontier of informatics. Retrieved from [Link]. [GS SEARCH].
Karannagoda, E. L., Herath, H. M., Fernando, K. N., Karunarathne, M. W., De Silva, N. H., & Perera, A. S. (2013). Document analysis based automatic concept map generation for enterprises. Advances in ICT for Emerging Regions (ICTer). IEEE. Fonte: Advances in ICT for Emerging Regions (ICTer). Retrieved from [Link]. doi: 10.1109/ICTer.2013.6761171. [GS SEARCH].
Le Coadic, Y.-F. (1996). A ciência da informação. Briquet de lemos Livros.
Leake, D., Maguitman, A., & Reichherzer, T. (2004). Understanding knowledge models: Modeling assessment of concept importance in concept maps. Proceedings of the 26th conference CSS. Retrieved from [Link]. [GS SEARCH].
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & Mcclosky, D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. (pp. 55-60). ACL (System Demonstrations). Retrieved from [Link]. [GS SEARCH].
Mcgarry, K., & De Lemos, H. V. (1999). O contexto dinânico da informação: uma análise introdutória. Briquet de Lemos.
Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. Retrieved from [Link]. [GS SEARCH].
Novak, J. D., & Cañas, A. J. (2010). A teoria subjacente aos mapas conceituais e como elaborá-los e usá-los. 5, pp. 9-29. Práxis Educativa. Retrieved from [Link]. doi: 10.5212/PraxEduc.v.5i1.009029. [GS SEARCH].
Thakkar, K. S., Dharaskar, R. V., & Chandak, M. B. (2010). Graph-based algorithms for text summarization. Emerging Trends in Engineering and Technology (ICETET). IEEE. Retrieved from [Link]. doi: 10.1109/ICETET.2010.104. [GS SEARCH].
Toffler, A. (1970). Future shock. New York: Amereon Ltd.
Villalón, J. J., & Calvo, R. A. (2011). Concept Maps as Cognitive Visualizations of Writing Assignments. Educational Technology & Society, 14, 16-27. Retrieved from [Link]. [GS SEARCH].
Wang, W. M., Cheung, C. F., Lee, W. B., & Kwok, S. K. (2008). Mining knowledge from natural language texts using fuzzy associated concept mapping. . Information Processing & Management, 44, 1707-1719. Retrieved from [Link]. doi: 10.1016/j.ipm.2008.05.002. [GS SEARCH].
Zouaq, A., & Nkambou, R. (2009). Evaluating the generation of domain ontologies in the knowledge puzzle project. IEEE Transactions on Knowledge and Data Engineering. Retrieved from [Link]. doi: 10.1109/TKDE.2009.25. [GS SEARCH].
Zubrinic, K., Kalpic, D., & Milicevic, M. (2012). The automatic creation of concept maps from documents written using morphologically rich languages. Expert systems with applications, 39, 12709-12718. Retrieved from [Link]. doi: 10.1016/j.eswa.2012.04.065. [GS SEARCH].
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Camila Zacché de Aguiar, Davidson Cury, Amal Zouaq
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.