Justiça, Responsabilidade, Transparência e Ética em Learning Analytics: Um Mapeamento Sistemático da Literatura

Authors

DOI:

https://doi.org/10.5753/rbie.2025.5840

Keywords:

Análise de Aprendizagem, Justiça, Responsabilidade, Transparência, Ética, Educação, Personalização

Abstract

Este mapeamento sistemático da literatura analisa a integração dos princípios de Justiça, Responsabilidade, Transparência e Ética (FATE) em Learning Analytics (LA), abordando sua aplicação em ambientes educacionais. O estudo identificou as ferramentas utilizadas, os principais desafios éticos e técnicos, além dos stakeholders mais impactados. Foram analisados 50 estudos, selecionados com base em critérios rigorosos de inclusão e qualidade, que evidenciam como práticas éticas podem promover um uso mais equitativo e responsável dos dados educacionais. Os resultados destacam a importância de personalizar o ensino, proteger a privacidade dos dados e garantir a transparência nos sistemas de LA. Conclui-se que a adoção bem-sucedida dessas tecnologias requer práticas de governança, auditorias regulares e maior atenção às necessidades de populações sub-representadas.

Downloads

Não há dados estatísticos.

Referências

Andersen, I. G. (2020). What went wrong? Examining teachers' data use and instructional decision making through a bottom-up data intervention in Denmark. International Journal of Educational Research, 102, 101585. https://doi.org/10.1016/j.ijer.2020.101585. [GS Search]

Bayer, V., Hlosta, M., & Fernandez, M. (2021). Learning Analytics and Fairness: Do Existing Algorithms Serve Everyone Equally? Lecture Notes in Computer Science (including sub-series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12749 LNAI, 71--75. https://doi.org/10.1007/978-3-030-78270-2_12. [GS Search]

Chen, B., & Poquet, O. (2022). Networks in Learning Analytics: Where Theory, Methodology, and Practice Intersect. Journal of Learning Analytics, 9, 1--12. https://doi.org/10.18608/jla.2022.7697. [GS Search]

Cheng, E. C. K., & Wang, T. (2023). Leading digital transformation and eliminating barriers for teachers to incorporate artificial intelligence in basic education in Hong Kong. Computers and Education: Artificial Intelligence, 5, 100171. https://doi.org/10.1016/j.caeai.2023.100171. [GS Search]

Cox, A. (2022). The Ethics of AI for Information Professionals: Eight Scenarios. Journal Of The Australian Library And Information Association, 71, 201--214. https://doi.org/10.1080/24750158.2022.2084885. [GS Search]

Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani, S., Brito, P., & Silva, A. (2016). Applications of ontologies in requirements engineering: a systematic review of the literature. Requirements Engineering, 21, 405--437. https://doi.org/10.1007/s00766-015-0222-6. [GS Search]

Dillenbourg, P. (1999). What do you mean by collaborative learning? Collaborative-learning: Cognitive and computational approaches., 1--19. [GS Search]

Duin, A. H., & Tham, J. (2020). The Current State of Analytics: Implications for Learning Management System (LMS) Use in Writing Pedagogy. Computers and Composition, 55, 102544. https://doi.org/10.1016/j.compcom.2020.102544. [GS Search]

Fan, Y., Jovanović, J., Saint, J., Jiang, Y., Wang, Q., & Gašević, D. (2022). Revealing the regulation of learning strategies of MOOC retakers: A learning analytic study. Computers & Education, 178, 104404. https://doi.org/10.1016/j.compedu.2021.104404. [GS Search]

Gedrimiene, E., Celik, I., Mäkitalo, K., & Muukkonen, H. (2023). Transparency and Trustworthiness in User Intentions to Follow Career Recommendations from a Learning Analytics Tool. Journal of Learning Analytics, 10, 54--70. https://doi.org/10.18608/jla.2023.7791. [GS Search]

Gedrimiene, E., Silvola, A., Pursiainen, J., Rusanen, J., & Muukkonen, H. (2020). Learning Analytics in Education: Literature Review and Case Examples From Vocational Education. Scandinavian Journal of Educational Research, 64, 1105--1119. https://doi.org/10.1080/00313831.2019.1649718. [GS Search]

Haderer, B., & Ciolacu, M. (2022). Education 4.0: Artificial Intelligence Assisted Taskand Time Planning System. Procedia Computer Science, 200, 1328--1337. https://doi.org/10.1016/j.procs.2022.01.334. [GS Search]

Han, Y., Wei, S., & Zhang, S. (2015). Analysis of online learning behavior from a tutor's perspective: Reflections on interactive teaching and learning in the era of big data. Asian Association of Open Universities Journal, 10(2), 29--48. https://doi.org/10.1108/AAOUJ-10-02-2015-B004. [GS Search]

Hakami, E., & Hernandez-Leo, D. (2021). Teachers' views about the impact of Learning Design Community platforms on Well-being. SIIE 2021 - 2021 International Symposium on Computers in Education. https://doi.org/10.1109/SIIE53363.2021.9583651. [GS Search]

Hakimi, L., Eynon, R., & Murphy, V. A. (2021). The Ethics of Using Digital Trace Data in Education: A Thematic Review of the Research Landscape. REVIEW OF EDUCATIONAL RESEARCH, 91, 671--717. https://doi.org/10.3102/00346543211020116. [GS Search].

Herodotou, C., Maguire, C., McDowell, N., Hlosta, M., & Boroowa, A. (2021). The engagement of university teachers with predictive learning analytics. Computers Education, 173, 104285. https://doi.org/10.1016/j.compedu.2021.104285. [GS Search]

Hertweck, C., Castillo, C., & Mathioudakis, M. (2022). Designing Affirmative Action Policies under Uncertainty. Journal Of Learning Analytics, 9, 121--137. https://doi.org/10.18608/jla.2022.7463. [GS Search]

Hooshyar, D., Pedaste, M., Saks, K., Leijen, Ä., Bardone, E., & Wang, M. (2020). Open learner models in supporting self-regulated learning in higher education: A systematic literature review. Computers Education, 154, 103878. https://doi.org/10.1016/j.compedu.2020.103878. [GS Search]

Howell, J. A., Roberts, L. D., & Mancini, V. O. (2018). Learning analytics messages: Impact of grade, sender, comparative information and message style on student affect and academic resilience. Computers in Human Behavior, 89, 8--15. https://doi.org/10.1016/j.chb.2018.07.021. [GS Search]

Khalil, M., Prinsloo, P., & Slade, S. (2023). Fairness, Trust, Transparency, Equity, and Responsibility in Learning Analytics. Journal of Learning Analytics, 10, 1--7. https://doi.org/10.18608/jla.2023.798. [GS Search]

Khosravi, H., Shum, S. B., Chen, G., Conati, C., Tsai, Y.-S., Kay, J., Knight, S., Maldonado, R. M., Sadiq, S., & Gašević, D. (2022). Explainable Artificial Intelligence in education. Computers and Education: Artificial Intelligence, 3, 100074. https://doi.org/10.1016/j.caeai.2022.100074. [GS Search]

Kitto, K., & Knight, S. (2019). Practical ethics for building learning analytics. British Journal of Educational Technology, 50, 2855--2870. https://doi.org/10.1111/bjet.12868. [GS Search]

Kelvin, T., Leandro, F., Fagundes, R., & Freitas, E. (2021). Políticas para Adoção de Learning Analytics: Uma Proposta Baseada nas Opiniões dos Estudantes. Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021), p. 885--896. https://doi.org/10.5753/sbie.2021.218599. [GS Search]

Krupiy, T. (2020). A vulnerability analysis: Theorising the impact of artificial intelligence decision- making processes on individuals, society and human diversity from a social justice perspective. Computer Law Security Review, 38, 105429. https://doi.org/10.1016/j.clsr.2020.105429. [GS Search]

Kurilovas, E. (2020). On data-driven decision-making for quality education. Computers in Human Behavior, 107, 105774. [GS Search]

Kwong, T., Wong, E., & Yue, K. (2017). Bringing Abstract Academic Integrity and Ethical Concepts into Real-Life Situations. Technology, Knowledge and Learning, 22, 353--368. https://doi.org/10.1007/s10758-017-9321-7 [GS Search]

Lee, H. H., & Gargroetzi, E. C. (2023). It's like a double-edged sword? Mentor Perspectives on Ethics and Responsibility in a Learning Analytics-Supported Virtual Mentoring Program. Journal Of Learning Analytics, 10, 85--100. https://doi.org/10.18608/jla.2023.7787. [GS Search]

Leeuwen, A. v., & Janssen, J. (2019). A systematic review of teacher guidance during collaborative learning in primary and secondary education. Educational Research Review, 27, 71--89. https://doi.org/10.1016/j.edurev.2019.02.001. [GS Search]

Leeuwen, A. v., Janssen, J., Erkens, G., & Brekelmans, M. (2014). Supporting teachers in guiding collaborating students: Effects of learning analytics in CSCL. Computers Education, 79, 28-39. https://doi.org/10.1016/j.compedu.2014.07.007. [GS Search]

Marras, M., Boratto, L., Ramos, G., & Fenu, G. (2022). Equality of Learning Opportunity via Individual Fairness in Personalized Recommendations. International Journal of Artificial Intelligence in Education, 32, 636--684. https://doi.org/10.1007/s40593-021-00271-1. [GS Search]

Mathrani, A., Susnjak, T., Ramaswami, G., & Barczak, A. (2021). Perspectives on the challenges of generalizability, transparency and ethics in predictive learning analytics. Computers and Education Open, 2, 100060. https://doi.org/10.1016/j.caeo.2021.100060. [GS Search]

May, M., Iksal, S., & Usener, C. A. (2017). The side effect of learning analytics: An empirical study on e-learning technologies and user privacy. Communications in Computer and Information Science, 739, 279--295. [GS Search]

Memarian, B., & Doleck, T. (2023). Fairness, Accountability, Transparency, and Ethics (FATE) in Artificial Intelligence (AI) and Higher Education: A systematic review. Computers and Education: Artificial Intelligence, 5, 100152. https://doi.org/10.1016/j.caeai.2023.100152. [GS Search]

Nasir, J., Abderrahim, M., Kothiyal, A., & Dillenbourg, P. (2022). Temporal pathways to learning: How learning emerges in an open-ended collaborative activity. Computers and Education: Artificial Intelligence, 3, 100093. https://doi.org/10.1016/j.caeai.2022.100093. [GS Search]

Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 100020. https://doi.org/10.1016/j.caeai.2021.100020. [GS Search]

Pargman, T. C., McGrath, C., Viberg, O., & Knight, S. (2023). New Vistas on Responsible Learning Analytics: A Data Feminist Perspective. Journal of Learning Analytics, 10, 133-148. https://doi.org/10.18608/jla.2023.7781. [GS Search]

Parsons, T. D. (2021). Ethics and educational technologies. Educational Technology Research and Development, 69, 335--338. https://doi.org/10.1007/s11423-020-09846-6. [GS Search]

Prinsloo, P., & Slade, S. (2017). Building the learning analytics curriculum: Should we teach (a code of) ethics? CEUR Workshop Proceedings, 1915. [GS Search]

Rachha, A., & Seyam, M. (2023). Explainable AI In Education: Current Trends, Challenges, And Opportunities. Conference Proceedings - IEEE SOUTHEASTCON, 2023-April, 232--239. https://doi.org/10.1109/SoutheastCon51012.2023.10115140. [GS Search]

Ranjeeth, S., Latchoumi, T., & Paul, P. V. (2020). A Survey on Predictive Models of Learning Analytics. Procedia Computer Science, 167, 37--46. [GS Search]

Savi, A. O., van Klaveren, C., & Cornelisz, I. (2023). Combating effort avoidance in computer adaptive practicing: Does a problem-skipping restriction promote learning? Computers Education, 206, 104908. https://doi.org/10.1016/j.compedu.2023.104908. [GS Search]

Sha, L., Gaševic´, D., & Chen, G. (2023). Lessons from debiasing data for fair and accurate predictive modeling in education. Expert Systems with Applications, 228, 120323. https://doi.org/10.1016/j.eswa.2023.120323. [GS Search]

Sharma, K., & Giannakos, M. (2021). Sensing technologies and child computer interaction: Opportunities, challenges and ethical considerations. International Journal of Child Computer Interaction, 30, 100331. https://doi.org/10.1016/j.ijcci.2021.100331 [GS Search]

Shibani, A., Knight, S., & Buckingham Shum, S. (2020). Educator perspectives on learning analytics in classroom practice. The Internet and Higher Education, 46, 100730. http://dx.doi.org/10.1016/j.iheduc.2020.100730. [GS Search]

Shiyan, P., Lai, S., Zhang, A., Yang, Y., & Sun, D. (2023). Graph convolutional network for automatic detection of teachers' nonverbal behavior. Computers and Education: Artificial Intelligence, 100174. https://doi.org/10.1016/j.caeai.2023.100174. [GS Search]

Siemens, G., & Baker, R. S. (2012). Learning analytics and educational data mining: towards communication and collaboration. Proceedings of the 2nd international conference on learning analytics and knowledge, 252--254. https://doi.org/10.1145/2330601.2330661. [GS Search]

Slade, S., & Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas. American Behavioral Scientist, 57, 1510--1529. https://doi.org/10.1177/0002764213479366.[GS Search]

Tambouris, E., Hermans, P., Tarrant, D., Zotou, M., & Tarabanis, K. (2018). Using problem- based learning and learning analytics in open data education. ACM International Conference Proceeding Series. https://doi.org/10.1145/3209281.3209342. [GS Search]

Tumilty, E., Spratt, H., Cestone, C., Wooten, K., Aronson, J., Hommel, J., Hellmich, M. R., & Chao, C. (2022). Developing future translational scientists through authentic learning and assessments. International Journal of Educational Research Open, 3, 100151. https://doi.org/10.1016/j.ijedro.2022.100151. [GS Search]

Tsai, Yi-Shan & Perrotta, Carlo & Gasevic, Dragan. (2019). Empowering learners with personalised learning approaches? Agency, equity and transparency in the context of learning analytics. Assessment & Evaluation in Higher Education. 45. 1-14. https://doi.org/10.1080/02602938.2019.1676396. [GS Search]

Van Barneveld, A., Arnold, K. E., & Campbell, J. P. (2012). Analytics in higher education: Establishing a common language. EDUCAUSE learning initiative, 1(1), l--ll. [GS Search]

Vasquez Verdugo, J., Gitiaux, X., Ortega, C., & Rangwala, H. (2022). FairEd: A Systematic Fairness Analysis Approach Applied in a Higher Educational Context. 12th Annual International Conference on Learning Analytics and Knowledge (LAK), 271--281. https://doi.org/10.1145/3506860.3506902. [GS Search]

Veljanova, H., Barreiros, C., Gosch, N., Staudegger, E., Ebner, M., & Lindstaedt, S. (2023). Operationalising Transparency as an Integral Value of Learning Analytics Systems - From Ethical and Data Protection to Technical Design Requirements. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14040 LNCS, 546--562. https://doi.org/10.1007/978-3-031-34411-4_37. [GS Search]

Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500--1509. https://doi.org/10.1177/0002764213479363. [GS Search]

Wise, A. F., Knight, S., & Ochoa, X. (2021). What Makes Learning Analytics Research Matter. Journal of Learning Analytics, 8, 1--9. https://doi.org/10.18608/jla.2021.7647. [GS Search]

Yang, S. J., Ogata, H., Matsui, T., & Chen, N.-S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008. https://doi.org/10.1016/j.caeai.2021.100008. [GS Search]

Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025. [GS Search]

Zhang, L., Basham, J. D., & Yang, S. (2020). Understanding the implementation of personalized learning: A research synthesis. Educational Research Review, 31, 100339. https://doi.org/10.1016/j.edurev.2020.100339. [GS Search]

Arquivos adicionais

Published

2025-08-18

Como Citar

OLIVEIRA, L. R. de; MATOS, D. D. M. da C.; RODRIGUES, L. A. L.; LIMA, M. L. C. O.; LIMA, B. de. Justiça, Responsabilidade, Transparência e Ética em Learning Analytics: Um Mapeamento Sistemático da Literatura. Revista Brasileira de Informática na Educação, [S. l.], v. 33, p. 773–798, 2025. DOI: 10.5753/rbie.2025.5840. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/5840. Acesso em: 5 dez. 2025.

Issue

Section

Artigos