Inteligência Artificial para Educação: Um Caminho para um Campo mais Inclusivo

Autores

DOI:

https://doi.org/10.5753/rbie.2023.3156

Palavras-chave:

Análise de dados educacionais, equidade digital, offline

Resumo

A área de Inteligência Artificial (IA) tem potencial para melhorar o ensino e a aprendizagem, por exemplo, por meio da análise de dados produzidos em ambientes educacionais. Além disso, também pode agravar a desigualdade, pois exige que alunos e instrutores tenham acesso à infraestrutura (smartphones ou computadores) exigida pela maioria dessas ferramentas para gerar e analisar dados. No entanto, o acesso a tal infraestrutura não é uma realidade para muitos estudantes ao redor do mundo. Para lançar luz sobre esse problema, este artigo investiga, por meio de um Estudo de Mapeamento Sistemático (MS), iniciativas que permitem uma análise de dados mais inclusiva usando IA na educação, especialmente em cenários com poucos recursos de conectividade. Identificamos que essas iniciativas são escassas e estão focadas na primeira fase da tarefa de análise de dados: a coleta de dados. Com base nos resultados do MS, propomos um conjunto de recomendações para os pesquisadores oferecerem direções para uma análise mais inclusiva de dados educacionais usando IA.

Downloads

Não há dados estatísticos.

Referências

Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering. In: 2011 International Symposium on Empirical Software Engineering and Measurement. pp. 275–284 (2011). 10.1109/ESEM.2011.36 [GS Search]

Devedžić, V.: Introduction to web-based education. Semantic Web and Education pp. 1–28 (2006). 10.1007/978-0-387-35417-0_1 [GS Search]

van Dijk, J.: The Digital Divide. Polity Press (2020)

Eradze, M., Väljataga, T., Laanpere, M.: Observing the use of e-textbooks in the classroom: Towards "offline" learning analytics. In: Cao, Y., V¨aljataga, T., Tang, J.K., Leung, H., Laanpere, M. (eds.) New Horizons in Web Based Learning. pp. 254–263. Springer International Publishing, Cham (2014). 10.1007/978-3-319-13296-9_28, [GS Search]

Ferguson, R.: Learning analytics: Drivers, developments and challenges. Int. J. Technol. Enhanc. Learn. 4(5/6), 304–317 (jan 2012). 10.1504/IJTEL.2012.051816, [GS Search]

Fincher, S., Robins, A.: The Cambridge Handbook of Computing Education Research. Cambridge Handbooks in Psychology, Cambridge University Press (2019)

Gašević, D.: Include us all! directions for adoption of learning analytics in the global south. Lim, C. P., Tinio, V. L. (Eds.). (2018). Learning analytics for the global south. Quezon City, Philippines: Foundation for Information Technology Education and Development. pp. 1–22 (2018), available at [Link]

Guan, C., Mou, J., Jiang, Z.: Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies 4(4), 134–147 (2020). 10.1016/j.ijis.2020.09.001, [GS Search]

Hillier, M.: Bridging the digital divide with off-line e-learning. Distance Education 39(1), 110–121 (2018). 10.1080/01587919.2017.1418627, [GS Search]

Holstein, K., Doroudi, S.: Equity and artificial intelligence in education: Will "aied" amplify or alleviate inequities in education? (2021). 10.48550/arXiv.2104.12920, [GS Search]

Katz, V., Rideout, V.: Learning at home while under-connected (2021), available at [Link]

Kinshuk, Han, B., Hong, H., Patel, A.: Student adaptivity in tile: a client-server approach. In: Proceedings IEEE International Conference on Advanced Learning Technologies. pp. 297–300 (2001). 10.1109/ICALT.2001.943927, [GS Search]

Kitchenham, B., Budgen, D., Brereton, P.: Evidence-based software engineering and systematic reviews (1st ed.) (2015). 10.1201/b19467, [GS Search]

Konomi, S., Hu, X., Gu, C., Mushi, D.: Designing a distributed cooperative data substrate for learners without internet access. In: Streitz, N.A., Konomi, S. (eds.) Distributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-being and Health, Art and Creativity. pp. 137–147. Springer International Publishing, Cham (2022). 10.1007/978-3-031-05431-0_10, [GS Search]

Konomi, S., Gao, L., Mushi, D.: An intelligent platform for offline learners based on modeldriven crowdsensing over intermittent networks. In: International Conference on Human- Computer Interaction. pp. 300–314. Springer (2020). 10.1007/978-3-030-49913-6_26, [GS Search]

Labba, C., Ben Atitallah, R., Boyer, A.: Combining artificial intelligence and edge computing to reshape distance education (case study: K-12 learners). In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) Artificial Intelligence in Education. pp. 218–230. Springer International Publishing, Cham (2022). 10.1007/978-3-031-11644-5_18, [GS Search]

Livingston, J., Steele, R.: A crowdsensing algorithm for imputing zika outbreak location data. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). pp. 334–340 (2017). 10.1109/UEMCON.2017.8249065, [GS Search]

Nunn, S.G., Avella, J.T., Kanai, T., Kebritchi, M.: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning 20(2), 13–29 (2016). 10.24059/olj.v20i2.790, [GS Search]

Patel, N., Thakkar, M., Rabadiya, B., Patel, D., Malvi, S., Sharma, A., Lomas, D.: Equitable access to intelligent tutoring systems through paper-digital integration. In: Crossley, S., Popescu, E. (eds.) Intelligent Tutoring Systems. pp. 255–263. Springer International Publishing, Cham (2022). 10.1007/978-3-031-09680-8_24, [GS Search]

Prinsloo, P., Kaliisa, R.: Learning analytics on the african continent: An emerging research focus and practice. Journal of Learning Analytics 9(2), 218–235 (Jun 2022). 10.18608/jla.2022.7539, [GS Search]

Puigjaner, R.: Progressing toward digital equity. In: Mata, F.J., Pont, A. (eds.) ICT for Promoting Human Development and Protecting the Environment. pp. 109–120. Springer International Publishing, Cham (2016). 10.1007/978-3-319-44447-5_11, [GS Search]

Thompson, G.: Two thirds of the world’s school-age children have no internet access at home, new unicef-itu report says (2020), available at [Link]

United Nations: The sustainable development goals report 2022 (2022), available at [Link]

Verma, S., Gros, A., Dluhos, M.: An architectural design for learning analytics in remote education environments. In: Twenty-fourth Americas Conference on Information Systems AMCIS, New Orleans (2018), available at [Link]

Wang, Y., Zhang, T., Yu, X.: A component-detection-based approach for interpreting off-line handwritten chemical cyclic compound structures. In: 2021 IEEE International Conference on Engineering, Technology Education (TALE). pp. 785–791 (2021). 10.1109/TALE52509.2021.9678874, [GS Search]

World Bank: Harnessing artificial intelligence for development in the post-covid-19 era: A review of national ai strategies and policies. World Bank Group p. 47 (2021), available at [Link]

Arquivos adicionais

Publicado

2023-06-25

Como Citar

FREITAS, E. L. S. X.; BITTENCOURT, I. I.; ISOTANI, S.; MARQUES, L.; DERMEVAL, D.; SILVA, A.; MELLO, R. F. Inteligência Artificial para Educação: Um Caminho para um Campo mais Inclusivo. Revista Brasileira de Informática na Educação, [S. l.], v. 31, p. 307–322, 2023. DOI: 10.5753/rbie.2023.3156. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/3156. Acesso em: 18 maio. 2024.

Edição

Seção

Edição Especial :: Aplicações Práticas de Learning Analytics no Brasil

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>