OntoUaffect: uma ontologia para estados afetivos baseada em contextos no ambiente educacional

Authors

DOI:

https://doi.org/10.5753/rbie.2025.4585

Keywords:

Contextos, Computação afetiva, Estados afetivos, Ontologia

Abstract

O comportamento humano é impactado por diferentes fenômenos que afetam a percepção e interação. Em cada cultura são usadas diferentes palavras para descrever como alguém se sente. Os fenômenos afetivos podem provocar diferentes reações fisiológicas, cognitivas ou comportamentais podendo afetar ações e reações de uma pessoa. No ambiente educacional os fenômenos afetivos são essenciais na aprendizagem, podendo impactar a motivação e a atenção. Dessa forma, entender as relações do estado afetivo e o contexto educacional pode auxiliar na identificação de fatores que impactam de forma negativa ou positiva o aluno. Este artigo propõe a ontologia OntoUaffect para representar informações de estados afetivos, o contexto educacional e pessoal do aluno. A ontologia foi desenvolvida utilizando o software Protégé e a linguagem Python. Para avaliação da ontologia foram utilizados dados reais coletados com alunos do ensino médio. A partir de consultas SPARQL foi possível obter resultados que respondem as questões propostas de identificação do estado afetivo do aluno em eventos específicos, assim como a relação das variáveis de contexto educacional, demonstrando a contribuição da ontologia proposta.

Downloads

Não há dados estatísticos.

Referências

Abaalkhail, R., Guthier, B., Alharthi, R., & El Saddik, A. (2018). Survey on ontologies for affective states and their influences Semantic web, 9(4), 441-458. https://doi.org/10.3233/SW-170270. [GS Search]

Álvarez, P., Zarazaga-Soria, F. J., & Baldassarri, S. (2020). Mobile music recommendations for runners based on location and emotions: The DJ-Running system. Pervasive and Mobile Computing, 67, 101242. https://doi.org/10.1016/j.pmcj.2020.101242. [GS Search]

Aranda, J. A. S., Bavaresco, R. S., de Carvalho, J. V., Yamin, A. C., Tavares, M. C., & Barbosa, J. L. V. (2021). A computational model for adaptive recording of vital signs through context histories. Journal of Ambient Intelligence and Humanized Computing, 1-15. https://doi.org/10.1007/s12652-021-03126-8. [GS Search]

Asinelli-Luz, A., Hickmann, A. A., & Hickmann, G. M. (2014). As relações interpessoais e as dimensões afetivas no processo ensino-aprendizagem. Linguagens, Educação e Sociedade, (31), 102-125. [link]. [GS Search]

Benta, K. I., Rarău, A., & Cremene, M. (2007, May). Ontology based affective context representation. In Proceedings of the 2007 Euro American conference on Telematics and information systems (pp. 1-9). https://doi.org/10.1145/1352694.1352741. [GS Search]

Chen, J., Yang, T., Huang, Z., Wang, K., Liu, M., & Lyu, C. (2023). Incorporating structured emotion commonsense knowledge and interpersonal relation into context-aware emotion recognition. Applied Intelligence, 53(4), 4201-4217. https://doi.org/10.1007/s10489-022-03729-4. [GS Search]

Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing, 5, 4-7. https://doi.org/10.1007/s007790170019. [GS Search]

D'Mello, S., & Calvo, R. A. (2013). Beyond the basic emotions: what should affective computing compute?. In CHI'13 extended abstracts on human factors in computing systems (pp. 2287-2294). https://doi.org/10.1145/2468356.2468751. [GS Search]

Dupont, D., Barbosa, J. L. V., & Alves, B. M. (2020). CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories. Pattern Analysis and Applications, 23, 725-734. https://doi.org/10.1007/s10044-019-00829-9. [GS Search]

Ekman, P. (1992). An argument for basic emotions. Cognition & emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068. [GS Search]

El Bolock, A., Herbert, C., & Abdennadher, S. (2020). CCOnto: towards an ontology-based model for character computing. In Research Challenges in Information Science: 14th International Conference, RCIS 2020, Limassol, Cyprus, September 23–25, 2020, Proceedings 14 (pp. 529-535). Springer International Publishing. https://doi.org/10.1007/978-3-030-50316-1_34 . [GS Search]

Filippetto, A. S., Lima, R., & Barbosa, J. L. V. (2021). A risk prediction model for software project management based on similarity analysis of context histories. Information and Software Technology, 131, 106497. https://doi.org/10.1016/j.infsof.2020.106497. [GS Search]

Francisco, R. (2020). Experience Sampling Method (ESM). Jaques, P. A.; Siqueira; S.; Bittencourt, Ig; P. M. (Orgs.) Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa. Porto Alegre. SBC. https://metodologia.ceie-br.org/livro-2. [GS Search]

Gil, R., Virgili-Gomá, J., García, R., & Mason, C. (2015). Emotions ontology for collaborative modelling and learning of emotional responses. Computers in Human Behavior, 51, 610-617. https://doi.org/10.1016/j.chb.2014.11.100. [GS Search]

Graterol, W., Diaz-Amado, J., Cardinale, Y., Dongo, I., Lopes-Silva, E., & Santos-Libarino, C. (2021). Emotion detection for social robots based on NLP transformers and an emotion ontology. Sensors, 21(4), 1322. https://doi.org/10.3390/s21041322. [GS Search]

Gu, T., Wang, X. H., Pung, H. K., & Zhang, D. Q. (2020). An ontology-based context model in intelligent environments. arXiv preprint arXiv:2003.05055. https://doi.org/10.48550/arXiv.2003.05055. [GS Search]

Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., & Wróbel, M. R. (2015). Modeling emotions for affect-aware applications. Information Systems Development and Applications, 55-67. [GS Search]

Landowska, A. (2018). Towards new mappings between emotion representation models. Applied sciences, 8(2), 274. https://doi.org/10.3390/app8020274. [GS Search]

Li, B., & Sano, A. (2020). Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1-26. https://doi.org/10.1145/3397318. [GS Search]

Martini, B. G., Helfer, G. A., Barbosa, J. L. V., Espinosa Modolo, R. C., da Silva, M. R., de Figueiredo, R. M., ... & Leithardt, V. R. Q. (2021). IndoorPlant: A model for intelligent services in indoor agriculture based on context histories. Sensors, 21(5), 1631. https://doi.org/10.3390/s21051631. [GS Search]

Mejbri, N., Essalmi, F., Jemni, M., & Alyoubi, B. A. (2022). Trends in the use of affective computing in e-learning environments. Education and Information Technologies, 1-23. https://doi.org/10.1007/s10639-021-10769-9. [GS Search]

Moore, P. (2017). Do We Understand the Relationship between Affective Computing, Emotion and Context-Awareness? MACHINES, 5(3), 16. MDPI. https://doi.org/10.3390/machines5030016. [GS Search]

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. [GS Search]

Ortony, A., Clore, G. L., & Collins, A. (1990). The Cognitive Structure of Emotions. Cambridge University Press. [GS Search]

Picard, R. (1997). Affective computing. MIT Press. [GS Search]

Rentz, D. M., Heckler, W. F., & Barbosa, J. L. (2023). A computational model for assisting individuals with suicidal ideation based on context histories. Universal Access in the Information Society, 1-20. https://doi.org/10.1007/s10209-023-00991-2. [GS Search]

Rezende, P. A. A., Pereira, C. K., Campos, F., David, J. M. N., & Braga, R. (2015). PERSONNA: proposta de ontologia de contexto e perfil de alunos para recomendação de objetos de aprendizagem. Revista Brasileira de Informática na Educação, 23(01), 70. https://doi.org/10.5753/rbie.2015.23.01.70. [GS Search]

Rodrigues, F. C., Filippetto, A. S., Lima, R. K. D., Heckler, W. F., & Barbosa, J. L. V. (2022). Kairós: using context histories for predictions and recommendations in projects time management. International Journal of Agile Systems and Management, 15(1), 31-52. https://doi.org/10.1504/IJASM.2022.124168. [GS Search]

Rosa, J. H., Barbosa, J. L., Kich, M., & Brito, L. (2015). A multi-temporal context-aware system for competences management. International Journal of Artificial Intelligence in Education, 25, 455-492. https://doi.org/10.1007/s40593-015-0047-y. [GS Search]

Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161. https://psycnet.apa.org/doi/10.1037/h0077714. [GS Search]

Sarmiento-Calisaya, E., Ccori, P. C., & Parari, A. C. (2022, January). An emotion-aware persuasive architecture to support challenging classroom situations. In 2022 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-2). IEEE. https://doi.org/10.1109/ICCE53296.2022.9730567. [GS Search]

Scherer, K. R. (2000). Psychological models of emotion. Em J. C. Borod (Ed.), The neuropsychology of emotion (pp. 137-162). [GS Search]

Scherer, K. R. (2005). What are emotions? And how can they be measured? Social science information, 44(4), 695-729. https://doi.org/10.1177/0539018405058216. [GS Search]

Sezer, O. B., Dogdu, E., & Ozbayoglu, A. M. (2017). Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet of Things Journal, 5(1), 1-27. https://doi.org/10.1109/JIOT.2017.2773600. [GS Search]

Souza, J. C., Hickmann, A. A., Asinelli-Luz, A., & Hickmann, G. M. (2020). A influência das emoções no aprendizado de escolares. Revista Brasileira de Estudos Pedagógicos, 101, 382-403. https://doi.org/10.24109/2176-6681.rbep.101i258.4279. [GS Search]

Stancin, K., Poscic, P., & Jaksic, D. (2020). Ontologies in education–state of the art. Education and Information Technologies, 25(6), 5301-5320. https://doi.org/10.1007/s10639-020-10226-z. [GS Search]

Wang, Y., Song, W., Tao, W., Liotta, A., Yang, D., Li, X., ... & Zhang, W. (2022). A systematic review on affective computing: Emotion models, databases, and recent advances. Information Fusion, 83, 19-52. https://doi.org/10.1016/j.inffus.2022.03.009. [GS Search]

Zhang, X., Hu, B., Chen, J., & Moore, P. (2013). Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web, 16, 497-513. https://doi.org/10.1007/s11280-012-0181-5. [GS Search]

Arquivos adicionais

Published

2025-05-02

Como Citar

DORNELES, S. O.; NICE FERRARI BARBOSA, D.; FRANCISCO, R.; BARBOSA, J. L. V. OntoUaffect: uma ontologia para estados afetivos baseada em contextos no ambiente educacional. Revista Brasileira de Informática na Educação, [S. l.], v. 33, p. 307–326, 2025. DOI: 10.5753/rbie.2025.4585. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/4585. Acesso em: 5 dez. 2025.

Issue

Section

Artigos