OntoUaffect: an ontology for affective states based on contexts in the educational environment

Authors

DOI:

https://doi.org/10.5753/rbie.2025.4585

Keywords:

Contexts, Affetive computing, Affective states, Ontology

Abstract

Human behavior is impacted by different phenomena that affect perception and interaction. In each culture, different words are used to describe how someone feels. Affective phenomena can provoke different physiological, cognitive, or behavioral reactions and can affect a person's actions and reactions. In the educational environment, affective phenomena are essential in learning and can impact motivation and attention. Thus, understanding the relationships of the affective state and the educational context can help in the identification of factors that negatively or positively impact the student. This article proposes the OntoUaffect ontology to represent information from affective states, the educational and personal context of the student. The ontology was developed using the Protégé software and the Python language. To evaluate the ontology, real data collected from high school students were used. From SPARQL consultations, it was possible to obtain results that answer the proposed questions of identification of the student's affective state in specific events, as well as the relationship of the variables of the educational context, demonstrating the contribution of the proposed ontology.

Downloads

Download data is not yet available.

References

Abaalkhail, R., Guthier, B., Alharthi, R., & El Saddik, A. (2018). Survey on ontologies for affective states and their influences Semantic web, 9(4), 441-458. https://doi.org/10.3233/SW-170270. [GS Search]

Álvarez, P., Zarazaga-Soria, F. J., & Baldassarri, S. (2020). Mobile music recommendations for runners based on location and emotions: The DJ-Running system. Pervasive and Mobile Computing, 67, 101242. https://doi.org/10.1016/j.pmcj.2020.101242. [GS Search]

Aranda, J. A. S., Bavaresco, R. S., de Carvalho, J. V., Yamin, A. C., Tavares, M. C., & Barbosa, J. L. V. (2021). A computational model for adaptive recording of vital signs through context histories. Journal of Ambient Intelligence and Humanized Computing, 1-15. https://doi.org/10.1007/s12652-021-03126-8. [GS Search]

Asinelli-Luz, A., Hickmann, A. A., & Hickmann, G. M. (2014). As relações interpessoais e as dimensões afetivas no processo ensino-aprendizagem. Linguagens, Educação e Sociedade, (31), 102-125. [link]. [GS Search]

Benta, K. I., Rarău, A., & Cremene, M. (2007, May). Ontology based affective context representation. In Proceedings of the 2007 Euro American conference on Telematics and information systems (pp. 1-9). https://doi.org/10.1145/1352694.1352741. [GS Search]

Chen, J., Yang, T., Huang, Z., Wang, K., Liu, M., & Lyu, C. (2023). Incorporating structured emotion commonsense knowledge and interpersonal relation into context-aware emotion recognition. Applied Intelligence, 53(4), 4201-4217. https://doi.org/10.1007/s10489-022-03729-4. [GS Search]

Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing, 5, 4-7. https://doi.org/10.1007/s007790170019. [GS Search]

D'Mello, S., & Calvo, R. A. (2013). Beyond the basic emotions: what should affective computing compute?. In CHI'13 extended abstracts on human factors in computing systems (pp. 2287-2294). https://doi.org/10.1145/2468356.2468751. [GS Search]

Dupont, D., Barbosa, J. L. V., & Alves, B. M. (2020). CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories. Pattern Analysis and Applications, 23, 725-734. https://doi.org/10.1007/s10044-019-00829-9. [GS Search]

Ekman, P. (1992). An argument for basic emotions. Cognition & emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068. [GS Search]

El Bolock, A., Herbert, C., & Abdennadher, S. (2020). CCOnto: towards an ontology-based model for character computing. In Research Challenges in Information Science: 14th International Conference, RCIS 2020, Limassol, Cyprus, September 23–25, 2020, Proceedings 14 (pp. 529-535). Springer International Publishing. https://doi.org/10.1007/978-3-030-50316-1_34 . [GS Search]

Filippetto, A. S., Lima, R., & Barbosa, J. L. V. (2021). A risk prediction model for software project management based on similarity analysis of context histories. Information and Software Technology, 131, 106497. https://doi.org/10.1016/j.infsof.2020.106497. [GS Search]

Francisco, R. (2020). Experience Sampling Method (ESM). Jaques, P. A.; Siqueira; S.; Bittencourt, Ig; P. M. (Orgs.) Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa. Porto Alegre. SBC. https://metodologia.ceie-br.org/livro-2. [GS Search]

Gil, R., Virgili-Gomá, J., García, R., & Mason, C. (2015). Emotions ontology for collaborative modelling and learning of emotional responses. Computers in Human Behavior, 51, 610-617. https://doi.org/10.1016/j.chb.2014.11.100. [GS Search]

Graterol, W., Diaz-Amado, J., Cardinale, Y., Dongo, I., Lopes-Silva, E., & Santos-Libarino, C. (2021). Emotion detection for social robots based on NLP transformers and an emotion ontology. Sensors, 21(4), 1322. https://doi.org/10.3390/s21041322. [GS Search]

Gu, T., Wang, X. H., Pung, H. K., & Zhang, D. Q. (2020). An ontology-based context model in intelligent environments. arXiv preprint arXiv:2003.05055. https://doi.org/10.48550/arXiv.2003.05055. [GS Search]

Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., & Wróbel, M. R. (2015). Modeling emotions for affect-aware applications. Information Systems Development and Applications, 55-67. [GS Search]

Landowska, A. (2018). Towards new mappings between emotion representation models. Applied sciences, 8(2), 274. https://doi.org/10.3390/app8020274. [GS Search]

Li, B., & Sano, A. (2020). Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1-26. https://doi.org/10.1145/3397318. [GS Search]

Martini, B. G., Helfer, G. A., Barbosa, J. L. V., Espinosa Modolo, R. C., da Silva, M. R., de Figueiredo, R. M., ... & Leithardt, V. R. Q. (2021). IndoorPlant: A model for intelligent services in indoor agriculture based on context histories. Sensors, 21(5), 1631. https://doi.org/10.3390/s21051631. [GS Search]

Mejbri, N., Essalmi, F., Jemni, M., & Alyoubi, B. A. (2022). Trends in the use of affective computing in e-learning environments. Education and Information Technologies, 1-23. https://doi.org/10.1007/s10639-021-10769-9. [GS Search]

Moore, P. (2017). Do We Understand the Relationship between Affective Computing, Emotion and Context-Awareness? MACHINES, 5(3), 16. MDPI. https://doi.org/10.3390/machines5030016. [GS Search]

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. [GS Search]

Ortony, A., Clore, G. L., & Collins, A. (1990). The Cognitive Structure of Emotions. Cambridge University Press. [GS Search]

Picard, R. (1997). Affective computing. MIT Press. [GS Search]

Rentz, D. M., Heckler, W. F., & Barbosa, J. L. (2023). A computational model for assisting individuals with suicidal ideation based on context histories. Universal Access in the Information Society, 1-20. https://doi.org/10.1007/s10209-023-00991-2. [GS Search]

Rezende, P. A. A., Pereira, C. K., Campos, F., David, J. M. N., & Braga, R. (2015). PERSONNA: proposta de ontologia de contexto e perfil de alunos para recomendação de objetos de aprendizagem. Revista Brasileira de Informática na Educação, 23(01), 70. https://doi.org/10.5753/rbie.2015.23.01.70. [GS Search]

Rodrigues, F. C., Filippetto, A. S., Lima, R. K. D., Heckler, W. F., & Barbosa, J. L. V. (2022). Kairós: using context histories for predictions and recommendations in projects time management. International Journal of Agile Systems and Management, 15(1), 31-52. https://doi.org/10.1504/IJASM.2022.124168. [GS Search]

Rosa, J. H., Barbosa, J. L., Kich, M., & Brito, L. (2015). A multi-temporal context-aware system for competences management. International Journal of Artificial Intelligence in Education, 25, 455-492. https://doi.org/10.1007/s40593-015-0047-y. [GS Search]

Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161. https://psycnet.apa.org/doi/10.1037/h0077714. [GS Search]

Sarmiento-Calisaya, E., Ccori, P. C., & Parari, A. C. (2022, January). An emotion-aware persuasive architecture to support challenging classroom situations. In 2022 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-2). IEEE. https://doi.org/10.1109/ICCE53296.2022.9730567. [GS Search]

Scherer, K. R. (2000). Psychological models of emotion. Em J. C. Borod (Ed.), The neuropsychology of emotion (pp. 137-162). [GS Search]

Scherer, K. R. (2005). What are emotions? And how can they be measured? Social science information, 44(4), 695-729. https://doi.org/10.1177/0539018405058216. [GS Search]

Sezer, O. B., Dogdu, E., & Ozbayoglu, A. M. (2017). Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet of Things Journal, 5(1), 1-27. https://doi.org/10.1109/JIOT.2017.2773600. [GS Search]

Souza, J. C., Hickmann, A. A., Asinelli-Luz, A., & Hickmann, G. M. (2020). A influência das emoções no aprendizado de escolares. Revista Brasileira de Estudos Pedagógicos, 101, 382-403. https://doi.org/10.24109/2176-6681.rbep.101i258.4279. [GS Search]

Stancin, K., Poscic, P., & Jaksic, D. (2020). Ontologies in education–state of the art. Education and Information Technologies, 25(6), 5301-5320. https://doi.org/10.1007/s10639-020-10226-z. [GS Search]

Wang, Y., Song, W., Tao, W., Liotta, A., Yang, D., Li, X., ... & Zhang, W. (2022). A systematic review on affective computing: Emotion models, databases, and recent advances. Information Fusion, 83, 19-52. https://doi.org/10.1016/j.inffus.2022.03.009. [GS Search]

Zhang, X., Hu, B., Chen, J., & Moore, P. (2013). Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web, 16, 497-513. https://doi.org/10.1007/s11280-012-0181-5. [GS Search]

Published

2025-05-02

How to Cite

DORNELES, S. O.; NICE FERRARI BARBOSA, D.; FRANCISCO, R.; BARBOSA, J. L. V. OntoUaffect: an ontology for affective states based on contexts in the educational environment. Brazilian Journal of Computers in Education, [S. l.], v. 33, p. 307–326, 2025. DOI: 10.5753/rbie.2025.4585. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/4585. Acesso em: 30 jan. 2026.

Issue

Section

Articles

Most read articles by the same author(s)