A Multiobjetive Approach to Recommend Learning Paths for Group of Users
DOI:
https://doi.org/10.5753/rbie.2019.27.03.336Keywords:
Learning path recommendation, Multi-objective optimization, Combinatorial optimizationAbstract
Defining learning paths is a crucial issue for effective learning. This article proposes the application of an evolutionary algorithm (NSGA-II) to optimize the recommendation process of learning paths for a group of individuals taking into account multiple criteria: satisfaction of the team members and time spent in the accomplishment of the activity. The proposed method was applied in two scenarios: an online course and presencial course. The method was evaluated regarding the performance, being compared to the exhaustive and random approaches; And regarding the pedagogical aspect, being compared with random and self selected methods. The results showed the potential of the proposed method from the computational point of view as well as the pedagogical point of view.
Downloads
References
Belacel, N., Durand, G., Laplante, F. (2014). A Binary Integer Programming Model for Global Optimization of Learning Path Discovery.. EDM (Workshops). [GS Search.
Cardoso, I. C., Rissoli, V., Moreira, T., Borges, V. (2016). Construção de Ambientes Interativos de apoio à reflexão docente aplicados à Teoria da Aprendizagem Significativa. Anais dos Workshops do Congresso Brasileiro de Informática na Educação, 5(1), p. 637. doi: 10.5753/cbie.wcbie.2016.637.[GS Search.
dos Santos, H., Cechinel, C., Araújo, R., Brauner, D. (2015). Recomendação de Objetos de Aprendizagem utilizando Filtragem Colaborativa: Uma comparação entre abordagens de pré-processamento por meio de clusterização. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), 26(1), p. 1127. doi: 10.5753/cbie.sbie.2015.1127.[GS Search.
Durand, G., Belacel, N., LaPlante, F. (2013). Graph theory based model for learning path recommendation. Information Sciences, 251, pp. 10-21. doi: 10.1016/j.ins.2013.04.017.[GS Search.
Feng, X., Xie, H., Peng, Y., Chen, W., Sun, H. (2010). Groupized learning path discovery based on member profile. International Conference on Web-Based Learning, pp. 301--310. doi: 10.1007/978-3-642-20539-2_32.[GS Search.
Godoy, D., Amandi, A. (2010). Link recommendation in e-learning systems based on content-based student profiles. Handbook of educational data mining, pp. 273--286. [GS Search.
Hwang, G.J., Kuo, F.R., Yin, P.Y., Chuang, K.H. (2010). A heuristic algorithm for planning personalized learning paths for context-aware ubiquitous learning. Computers & Education, 54(2), p. 404--415. doi: 10.1016/j.compedu.2009.08.024.[GS Search.
Li, Q., Lau, R. WH., Wah, B. W., Ashman, H., Leung, E. WC., Li, F., Lee, V. (2009). Guest editors' introduction: Emerging internet technologies for e-learning. IEEE Internet Computing, 13(4), pp. 11--17. doi: 10.1109/MIC.2009.83.[GS Search.
Madhour, H., Wentland Forte, M. (2008). Personalized learning path delivery: Models and example of application. Intelligent Tutoring Systems, pp. 725--727. doi: 10.1007/978-3-540-69132-7_90.[GS Search.
Miranda, P., Ferreira, R., Fiorentino, G., Ligia, L., Souza, S., Castro, M., André, L. (2017). Seleção de Caminho de Aprendizagem para Grupo de Usuários: uma Abordagem baseada em Perfil. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), 28(1), p. 1167. doi: 10.5753/cbie.sbie.2017.1167.[GS Search.
Orouskhani, M., Teshnehlab, M., Nekoui, M. A. (2017). Evolutionary dynamic multi-objective optimization algorithm based on Borda count method. International Journal of Machine Learning and CybernetiGS, pp. 1--29. doi: 10.1007/s13042-017-0695-3.[GS Search.
Steiner, C. M., Albert, D. (2007). Personalising learning through prerequisite structures derived from concept maps. International Conference on Web-Based Learning, pp. 43--54. doi: 10.1007/978-3-540-78139-4_5.[GS Search.
Tang, T. Y., Mccalla, G. G. (2010). Data mining for contextual educational recommendation and evaluation strategies. Handb. Educ. Data Min., p. 257. [GS Search.
Voss, G. B., Nunes, F. B., Herpich, F., Medina, R. D. (2013). Ambientes Virtuais de Aprendizagem e Ambientes Imersivos: um estudo de caso utilizando tecnologias de computação móvel. Anais do Simpósio Brasileiro de Informática na Educação, 24(1), p. 12. doi: 10.5753/cbie.sbie.2013.12.[GS Search.
Xie, H., Zou, D., Wang, F. L., Wong, T.L., Rao, Y., Wang, S. H. (2017). Discover learning path for group users: A profile-based approach. Neurocomputing, 254(1), pp. 59-70. doi: 10.1016/j.neucom.2016.08.133.[GS Search.
Zhao, C., Wan, L. (2006). A shortest learning path selection algorithm in e-learning. Advanced Learning Technologies; 2006. Sixth International Conference on, pp. 94--95. [GS Search]
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Péricles B. C. de Miranda, Rafael Ferreira, Mayara S. O. Castro, Giuseppe Fiorentino Neto, Samuel J. Souza, Lucas A. Santos, Lizandra L. S. B. Silva
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.