A Multiobjetive Approach to Recommend Learning Paths for Group of Users

Authors

  • Péricles B. C. de Miranda Universidade Federal Rural de Pernambuco
  • Rafael Ferreira Universidade Federal Rural de Pernambuco
  • Mayara S. O. Castro Universidade Federal Rural de Pernambuco
  • Giuseppe Fiorentino Neto Universidade Federal Rural de Pernambuco
  • Samuel J. Souza Universidade Federal de Pernambuco
  • Lucas A. Santos Universidade Federal Rural de Pernambuco
  • Lizandra L. S. B. Silva Universidade Federal Rural de Pernambuco

DOI:

https://doi.org/10.5753/rbie.2019.27.03.336

Keywords:

Learning path recommendation, Multi-objective optimization, Combinatorial optimization

Abstract

Defining learning paths is a crucial issue for effective learning. This article proposes the application of an evolutionary algorithm (NSGA-II) to optimize the recommendation process of learning paths for a group of individuals taking into account multiple criteria: satisfaction of the team members and time spent in the accomplishment of the activity. The proposed method was applied in two scenarios: an online course and presencial course. The method was evaluated regarding the performance, being compared to the exhaustive and random approaches; And regarding the pedagogical aspect, being compared with random and self selected methods. The results showed the potential of the proposed method from the computational point of view as well as the pedagogical point of view.

Downloads

Download data is not yet available.

References

Belacel, N., Durand, G., Laplante, F. (2014). A Binary Integer Programming Model for Global Optimization of Learning Path Discovery.. EDM (Workshops). [GS Search.

Cardoso, I. C., Rissoli, V., Moreira, T., Borges, V. (2016). Construção de Ambientes Interativos de apoio à reflexão docente aplicados à Teoria da Aprendizagem Significativa. Anais dos Workshops do Congresso Brasileiro de Informática na Educação, 5(1), p. 637. doi: 10.5753/cbie.wcbie.2016.637.[GS Search.

dos Santos, H., Cechinel, C., Araújo, R., Brauner, D. (2015). Recomendação de Objetos de Aprendizagem utilizando Filtragem Colaborativa: Uma comparação entre abordagens de pré-processamento por meio de clusterização. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), 26(1), p. 1127. doi: 10.5753/cbie.sbie.2015.1127.[GS Search.

Durand, G., Belacel, N., LaPlante, F. (2013). Graph theory based model for learning path recommendation. Information Sciences, 251, pp. 10-21. doi: 10.1016/j.ins.2013.04.017.[GS Search.

Feng, X., Xie, H., Peng, Y., Chen, W., Sun, H. (2010). Groupized learning path discovery based on member profile. International Conference on Web-Based Learning, pp. 301--310. doi: 10.1007/978-3-642-20539-2_32.[GS Search.

Godoy, D., Amandi, A. (2010). Link recommendation in e-learning systems based on content-based student profiles. Handbook of educational data mining, pp. 273--286. [GS Search.

Hwang, G.J., Kuo, F.R., Yin, P.Y., Chuang, K.H. (2010). A heuristic algorithm for planning personalized learning paths for context-aware ubiquitous learning. Computers & Education, 54(2), p. 404--415. doi: 10.1016/j.compedu.2009.08.024.[GS Search.

Li, Q., Lau, R. WH., Wah, B. W., Ashman, H., Leung, E. WC., Li, F., Lee, V. (2009). Guest editors' introduction: Emerging internet technologies for e-learning. IEEE Internet Computing, 13(4), pp. 11--17. doi: 10.1109/MIC.2009.83.[GS Search.

Madhour, H., Wentland Forte, M. (2008). Personalized learning path delivery: Models and example of application. Intelligent Tutoring Systems, pp. 725--727. doi: 10.1007/978-3-540-69132-7_90.[GS Search.

Miranda, P., Ferreira, R., Fiorentino, G., Ligia, L., Souza, S., Castro, M., André, L. (2017). Seleção de Caminho de Aprendizagem para Grupo de Usuários: uma Abordagem baseada em Perfil. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), 28(1), p. 1167. doi: 10.5753/cbie.sbie.2017.1167.[GS Search.

Orouskhani, M., Teshnehlab, M., Nekoui, M. A. (2017). Evolutionary dynamic multi-objective optimization algorithm based on Borda count method. International Journal of Machine Learning and CybernetiGS, pp. 1--29. doi: 10.1007/s13042-017-0695-3.[GS Search.

Steiner, C. M., Albert, D. (2007). Personalising learning through prerequisite structures derived from concept maps. International Conference on Web-Based Learning, pp. 43--54. doi: 10.1007/978-3-540-78139-4_5.[GS Search.

Tang, T. Y., Mccalla, G. G. (2010). Data mining for contextual educational recommendation and evaluation strategies. Handb. Educ. Data Min., p. 257. [GS Search.

Voss, G. B., Nunes, F. B., Herpich, F., Medina, R. D. (2013). Ambientes Virtuais de Aprendizagem e Ambientes Imersivos: um estudo de caso utilizando tecnologias de computação móvel. Anais do Simpósio Brasileiro de Informática na Educação, 24(1), p. 12. doi: 10.5753/cbie.sbie.2013.12.[GS Search.

Xie, H., Zou, D., Wang, F. L., Wong, T.L., Rao, Y., Wang, S. H. (2017). Discover learning path for group users: A profile-based approach. Neurocomputing, 254(1), pp. 59-70. doi: 10.1016/j.neucom.2016.08.133.[GS Search.

Zhao, C., Wan, L. (2006). A shortest learning path selection algorithm in e-learning. Advanced Learning Technologies; 2006. Sixth International Conference on, pp. 94--95. [GS Search]

Published

2019-09-01

How to Cite

MIRANDA, P. B. C. de; FERREIRA, R.; CASTRO, M. S. O.; FIORENTINO NETO, G.; SOUZA, S. J.; SANTOS, L. A.; SILVA, L. L. S. B. A Multiobjetive Approach to Recommend Learning Paths for Group of Users. Brazilian Journal of Computers in Education, [S. l.], v. 27, n. 3, p. 336–350, 2019. DOI: 10.5753/rbie.2019.27.03.336. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/4737. Acesso em: 21 dec. 2024.

Issue

Section

Awarded Papers

Most read articles by the same author(s)