Estrategias para la Extracción de Patrones Secuenciales en la Enseñanza de Algoritmos: Una Comparación entre Algoritmos Clásicos y Metaheurísticas Evolutivas

Authors

DOI:

https://doi.org/10.5753/rbie.2025.5119

Keywords:

Minería de Patrones Secuenciales, Metaheurísticas Evolutivas, Personalización de la Enseñanza de Programación

Abstract

El descubrimiento de patrones secuenciales en el comportamiento de los estudiantes en entornos de enseñanza de programación en línea es esencial para la personalización del aprendizaje y la optimización del proceso educativo. Con la transformación digital en la enseñanza, las plataformas orientadas al aprendizaje de algoritmos han ganado protagonismo, pero aún carecen de un secuenciamiento personalizado de actividades que ayude en la progresión educativa. En este escenario, la aplicación de la Minería de Patrones Secuenciales (MPS) puede revelar patrones de aprendizaje y desafíos recurrentes enfrentados por los alumnos, convirtiéndose en una herramienta valiosa para la personalización de la experiencia de aprendizaje. Así, el presente estudio compara dos enfoques de MPS: algoritmos clásicos y metaheurísticas evolutivas, para evaluar sus eficacias en la detección de patrones. La investigación analiza las interacciones de 313 alumnos en un entorno de enseñanza de algoritmos, observando el desempeño de los enfoques en cuanto a precisión, costo computacional y aplicabilidad. Los algoritmos clásicos se muestran eficientes en bases de datos más pequeñas, mientras que las metaheurísticas evolutivas revelan patrones complejos con mayor eficacia en grandes volúmenes de datos. Los resultados indican que ambos enfoques pueden beneficiar el entorno de enseñanza, ayudando al profesor a anticipar señales de desmotivación e intervenir de forma proactiva para mantener al alumno interesado y activo en la plataforma. Como contribución, se demuestra que tanto los algoritmos clásicos como las metaheurísticas evolutivas pueden generar insights valiosos, como la necesidad de revisar un problema específico o proporcionar más ejemplos prácticos a los alumnos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the eleventh international conference on data engineering, 3–14. https://doi.org/10.1109/ICDE.1995.380415 [GS Search]

Almeida, D. J., Fernandes, M. A., & da Costa, N. T. (2022). Sequencing and Recommending Pedagogical Activities from Bloom’s Taxonomy using RASI and Multi-objective PSO. Proceedings of the 14th International Conference on Computer Supported Education - Volume 2: CSEDU, 105–116. https://doi.org/10.5220/0011090000003182 [GS Search]

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential pattern mining using a bitmap representation. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 429–435. https://doi.org/10.1145/775047.775109 [GS Search]

Bhaskar, M., Das, M. M., Chithralekha, T., & Sivasatya, S. (2010). Genetic algorithm based adaptive learning scheme generation for context aware e-learning. International Journal on Computer Science and Engineering, 2(4), 1271–1279. [GS Search]

Chiu, D.-Y., Wu, Y. -H., & Chen, A. L. (2004). An efficient algorithm for mining frequent sequences by a new strategy without support counting. Proceedings. 20th International Conference on Data Engineering, 375–386. https://doi.org/10.1109/ICDE.2004.1320012 [GS Search]

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms [PhD Thesis]. Politecnico di Milano. [GS Search]

Eberhart, R., & Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39–43. https://doi.org/10.1109/MHS.1995.494215 [GS Search]

Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C. -W., Tseng, V. S., et al. (2014). Spmf: a java open-source pattern mining library. J. Mach. Learn. Res., 15(1), 3389–3393. https://doi.org/10.5555/2627435.2750353 [GS Search]

Geem, Z., Kim, J., & et al. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60–68. https://doi.org/10.1177/003754970107600201 [GS Search]

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M. -C. (2000). FreeSpan: frequent pattern-projected sequential pattern mining. Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, 355–359. https://doi.org/10.1145/347090.347167 [GS Search]

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM sigmod record, 29(2), 1–12. https://doi.org/10.1145/335191.335372 [GS Search]

Hnida, M., Idrissi, M. K., & Bennani, S. (2016). Adaptive teaching learning sequence based on instructional design and evolutionary computation. 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET), 1–6. https://doi.org/10.1109/ITHET.2016.7760739 [GS Search]

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. https://doi.org/10.7551/mitpress/1090.001.0001 [GS Search]

Kang, J., Liu, M., & Qu, W. (2017). Using gameplay data to examine learning behavior patterns in a serious game. Computers in Human Behavior, 72, 757–770. https://doi.org/10.1016/j.chb.2016.09.062 [GS Search]

Li, J.-W., Chang, Y. -C., Chu, C.-P., & Tsai, C. -C. (2012). A self-adjusting e-course generation process for personalized learning. Expert Systems with Applications, 39(3), 3223–3232. https://doi.org/https://doi.org/10.1016/j.eswa.2011.09.009 [GS Search]

Machado, M. d. O. C., Barrére, E., & Souza, J. (2019). Solving the Adaptive Curriculum Sequencing Problem with Prey-Predator Algorithm. International Journal of Distance Education Technologies (IJDET), 17(4), 71–93. https://doi.org/10.4018/IJDET.2019100105 [GS Search]

Maranhão, D., Borges, P., & Neto, C. (2023). Descoberta de padrões sequenciais de aprendizagem em um ambiente voltado ao ensino de algoritmos. Anais do XXXIV Simpósio Brasileiro de Informática na Educação, 1385–1396. https://doi.org/10.5753/sbie.2023.235102 [GS Search]

Maranhão, D., & Neto, C. S. (2024). Aplicação de Metaheurísticas Evolutivas na Mineração de Padrões Sequenciais de Aprendizagem em Ambientes de Ensino de Algoritmos. Anais do XXXV Simpósio Brasileiro de Informática na Educação, 1837–1850. https://doi.org/10.5753/sbie.2024.242581 [GS Search]

Martins, A. F., Machado, M., Bernardino, H. S., & de Souza, J. F. (2021). A comparative analysis of metaheuristics applied to adaptive curriculum sequencing. Soft Computing, 25(16), 11019–11034. https://doi.org/10.1007/s00500-021-05836-9 [GS Search]

Mirzaei, M., & Sahebi, S. (2019). Modeling students’ behavior using sequential patterns to predict their performance. Artificial Intelligence in Education: 20th International Conference, AIED 2019, Chicago, IL, USA, June 25-29, 2019, Proceedings, Part II 20, 350–353. https://doi.org/10.1007/978-3-030-23207-8_64 [GS Search]

Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired Computation (IJBIC), 3, 1–16. https://doi.org/10.1504/IJBIC.2011.038700 [GS Search]

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. -C. (2001). PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of the 17th International Conference on Data Engineering (ICDE’01), 215–224. https://doi.org/10.1109/ICDE.2001.914830 [GS Search]

Sharma, R., Banati, H., & Bedi, P. (2012). Adaptive content sequencing for e-learning courses using ant colony optimization. Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011, 579–590. https://doi.org/10.1007/978-81-322-0491-6_53 [GS Search]

Slim, A., Heileman, G. L., Al-Doroubi, W., & Abdallah, C. T. (2016). The impact of course enrollment sequences on student success. 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), 59–65. https://doi.org/10.1109/AINA.2016.140 [GS Search]

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. Advances in Database Technology—EDBT’96: 5th International Conference on Extending Database Technology Avignon, France, March 25–29, 1996 Proceedings 5, 1–17. https://doi.org/10.1007/BFb0014140 [GS Search]

Yang, Z., Wang, Y., & Kitsuregawa, M. (2007). LAPIN: effective sequential pattern mining algorithms by last position induction for dense databases. Advances in Databases: Concepts, Systems and Applications: 12th International Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007. Proceedings 12, 1020–1023. https://doi.org/10.1007/978-3-540-71703-4_95 [GS Search]

Zaki, M. J. (2000). Sequence mining in categorical domains: incorporating constraints. Proceedings of the Ninth International Conference on Information and Knowledge Management, 422–429. https://doi.org/10.1145/354756.354849 [GS Search]

Zaki, M. J. (2001). SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning, 42(1-2), 31–60. https://doi.org/10.1023/A:1007652502315 [GS Search]

Zhang, Y., & Paquette, L. (2023). Sequential pattern mining in educational data: The application context, potential, strengths, and limitations. Em Educational Data Science: Essentials, Approaches, and Tendencies: Proactive Education based on Empirical Big Data Evidence (pp. 219–254). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0026-8_6 [GS Search]

Zhou, M., Xu, Y., Nesbit, J. C., & Winne, P. H. (2010). Sequential pattern analysis of learning logs: Methodology and applications. Handbook of educational data mining, 107, 107–121. https://doi.org/10.1201/b10274-10. [GS Search]

Archivos adicionales

Published

2025-08-21

Cómo citar

MARANHÃO, D. S. S.; SOARES NETO, C. de S. Estrategias para la Extracción de Patrones Secuenciales en la Enseñanza de Algoritmos: Una Comparación entre Algoritmos Clásicos y Metaheurísticas Evolutivas. Revista Brasileña de Informática en la Educación, [S. l.], v. 33, p. 912–942, 2025. DOI: 10.5753/rbie.2025.5119. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/5119. Acesso em: 30 ene. 2026.

Issue

Section

Número Especial :: Políticas, Calidad, Desarrollo Tecnológico e Innovación