Estratégias para Extração de Padrões Sequenciais no Ensino de Algoritmos: Uma Comparação entre Algoritmos Clássicos e Metaheurísticas Evolutivas
DOI:
https://doi.org/10.5753/rbie.2025.5119Keywords:
Mineração de Padrões Sequenciais, Metaheurísticas Evolutivas, Personalização do Ensino de ProgramaçãoAbstract
A descoberta de padrões sequenciais no comportamento dos estudantes em ambientes de ensino de programação online é essencial para a personalização do aprendizado e otimização do processo educacional. Com a transformação digital no ensino, plataformas voltadas ao aprendizado de algoritmos ganharam destaque, mas ainda carecem de um sequenciamento personalizado de atividades que auxilie na progressão educacional. Neste cenário, a aplicação da Mineração de Padrões Sequenciais (MPS) pode revelar padrões de aprendizagem e desafios recorrentes enfrentados pelos alunos, tornando-se uma ferramenta valiosa para personalização da experiência de aprendizagem. Assim, o presente estudo compara duas abordagens de MPS: algoritmos clássicos e metaheurísticas evolutivas, para avaliar suas eficácias na detecção de padrões. A pesquisa analisa as interações de 313 alunos em um ambiente de ensino de algoritmos, observando o desempenho das abordagens quanto à precisão, custo computacional e aplicabilidade. Os algoritmos clássicos mostram-se eficientes em bases menores, enquanto as metaheurísticas evolutivas revelam padrões complexos com maior eficácia em grandes volumes de dados. Os resultados indicam que ambas as abordagens podem beneficiar o ambiente de ensino, ajudando o professor a antecipar sinais de desmotivação e intervir de forma proativa para manter o aluno interessado e ativo na plataforma. Como contribuição, demonstra-se que, tanto os algoritmos clássicos quanto as metaheurísticas evolutivas, podem gerar insights valiosos, como a necessidade de revisar um problema específico ou fornecer mais exemplos práticos aos alunos.
Downloads
Referências
Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the eleventh international conference on data engineering, 3–14. https://doi.org/10.1109/ICDE.1995.380415 [GS Search]
Almeida, D. J., Fernandes, M. A., & da Costa, N. T. (2022). Sequencing and Recommending Pedagogical Activities from Bloom’s Taxonomy using RASI and Multi-objective PSO. Proceedings of the 14th International Conference on Computer Supported Education - Volume 2: CSEDU, 105–116. https://doi.org/10.5220/0011090000003182 [GS Search]
Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential pattern mining using a bitmap representation. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 429–435. https://doi.org/10.1145/775047.775109 [GS Search]
Bhaskar, M., Das, M. M., Chithralekha, T., & Sivasatya, S. (2010). Genetic algorithm based adaptive learning scheme generation for context aware e-learning. International Journal on Computer Science and Engineering, 2(4), 1271–1279. [GS Search]
Chiu, D.-Y., Wu, Y. -H., & Chen, A. L. (2004). An efficient algorithm for mining frequent sequences by a new strategy without support counting. Proceedings. 20th International Conference on Data Engineering, 375–386. https://doi.org/10.1109/ICDE.2004.1320012 [GS Search]
Dorigo, M. (1992). Optimization, Learning and Natural Algorithms [PhD Thesis]. Politecnico di Milano. [GS Search]
Eberhart, R., & Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39–43. https://doi.org/10.1109/MHS.1995.494215 [GS Search]
Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C. -W., Tseng, V. S., et al. (2014). Spmf: a java open-source pattern mining library. J. Mach. Learn. Res., 15(1), 3389–3393. https://doi.org/10.5555/2627435.2750353 [GS Search]
Geem, Z., Kim, J., & et al. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60–68. https://doi.org/10.1177/003754970107600201 [GS Search]
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M. -C. (2000). FreeSpan: frequent pattern-projected sequential pattern mining. Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, 355–359. https://doi.org/10.1145/347090.347167 [GS Search]
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM sigmod record, 29(2), 1–12. https://doi.org/10.1145/335191.335372 [GS Search]
Hnida, M., Idrissi, M. K., & Bennani, S. (2016). Adaptive teaching learning sequence based on instructional design and evolutionary computation. 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET), 1–6. https://doi.org/10.1109/ITHET.2016.7760739 [GS Search]
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. https://doi.org/10.7551/mitpress/1090.001.0001 [GS Search]
Kang, J., Liu, M., & Qu, W. (2017). Using gameplay data to examine learning behavior patterns in a serious game. Computers in Human Behavior, 72, 757–770. https://doi.org/10.1016/j.chb.2016.09.062 [GS Search]
Li, J.-W., Chang, Y. -C., Chu, C.-P., & Tsai, C. -C. (2012). A self-adjusting e-course generation process for personalized learning. Expert Systems with Applications, 39(3), 3223–3232. https://doi.org/https://doi.org/10.1016/j.eswa.2011.09.009 [GS Search]
Machado, M. d. O. C., Barrére, E., & Souza, J. (2019). Solving the Adaptive Curriculum Sequencing Problem with Prey-Predator Algorithm. International Journal of Distance Education Technologies (IJDET), 17(4), 71–93. https://doi.org/10.4018/IJDET.2019100105 [GS Search]
Maranhão, D., Borges, P., & Neto, C. (2023). Descoberta de padrões sequenciais de aprendizagem em um ambiente voltado ao ensino de algoritmos. Anais do XXXIV Simpósio Brasileiro de Informática na Educação, 1385–1396. https://doi.org/10.5753/sbie.2023.235102 [GS Search]
Maranhão, D., & Neto, C. S. (2024). Aplicação de Metaheurísticas Evolutivas na Mineração de Padrões Sequenciais de Aprendizagem em Ambientes de Ensino de Algoritmos. Anais do XXXV Simpósio Brasileiro de Informática na Educação, 1837–1850. https://doi.org/10.5753/sbie.2024.242581 [GS Search]
Martins, A. F., Machado, M., Bernardino, H. S., & de Souza, J. F. (2021). A comparative analysis of metaheuristics applied to adaptive curriculum sequencing. Soft Computing, 25(16), 11019–11034. https://doi.org/10.1007/s00500-021-05836-9 [GS Search]
Mirzaei, M., & Sahebi, S. (2019). Modeling students’ behavior using sequential patterns to predict their performance. Artificial Intelligence in Education: 20th International Conference, AIED 2019, Chicago, IL, USA, June 25-29, 2019, Proceedings, Part II 20, 350–353. https://doi.org/10.1007/978-3-030-23207-8_64 [GS Search]
Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired Computation (IJBIC), 3, 1–16. https://doi.org/10.1504/IJBIC.2011.038700 [GS Search]
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. -C. (2001). PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of the 17th International Conference on Data Engineering (ICDE’01), 215–224. https://doi.org/10.1109/ICDE.2001.914830 [GS Search]
Sharma, R., Banati, H., & Bedi, P. (2012). Adaptive content sequencing for e-learning courses using ant colony optimization. Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011, 579–590. https://doi.org/10.1007/978-81-322-0491-6_53 [GS Search]
Slim, A., Heileman, G. L., Al-Doroubi, W., & Abdallah, C. T. (2016). The impact of course enrollment sequences on student success. 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), 59–65. https://doi.org/10.1109/AINA.2016.140 [GS Search]
Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. Advances in Database Technology—EDBT’96: 5th International Conference on Extending Database Technology Avignon, France, March 25–29, 1996 Proceedings 5, 1–17. https://doi.org/10.1007/BFb0014140 [GS Search]
Yang, Z., Wang, Y., & Kitsuregawa, M. (2007). LAPIN: effective sequential pattern mining algorithms by last position induction for dense databases. Advances in Databases: Concepts, Systems and Applications: 12th International Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007. Proceedings 12, 1020–1023. https://doi.org/10.1007/978-3-540-71703-4_95 [GS Search]
Zaki, M. J. (2000). Sequence mining in categorical domains: incorporating constraints. Proceedings of the Ninth International Conference on Information and Knowledge Management, 422–429. https://doi.org/10.1145/354756.354849 [GS Search]
Zaki, M. J. (2001). SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning, 42(1-2), 31–60. https://doi.org/10.1023/A:1007652502315 [GS Search]
Zhang, Y., & Paquette, L. (2023). Sequential pattern mining in educational data: The application context, potential, strengths, and limitations. Em Educational Data Science: Essentials, Approaches, and Tendencies: Proactive Education based on Empirical Big Data Evidence (pp. 219–254). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0026-8_6 [GS Search]
Zhou, M., Xu, Y., Nesbit, J. C., & Winne, P. H. (2010). Sequential pattern analysis of learning logs: Methodology and applications. Handbook of educational data mining, 107, 107–121. https://doi.org/10.1201/b10274-10. [GS Search]
Arquivos adicionais
Published
Como Citar
Issue
Section
Licença
Copyright (c) 2025 Djefferson Smith Santos Maranhão, Carlos de Salles Soares Neto

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

