Avaliação de Sistema de Tutoria Híbrida Humano-Artificial para Mediação do Engajamento no Aprendizado

Authors

DOI:

https://doi.org/10.5753/rbie.2025.4988

Keywords:

avaliação, sistema de tutoria inteligente, mediação, tutoria humana, aprendizado on-line

Abstract

Este artigo pioneiro tem como objetivo compreender estratégias de tutoria híbrida, que combina intervenção humana e artificial. Neste sentido, foi desenvolvida uma abordagem de Sistema de Tutoria Inteligente (STI) que envolve a atuação de tutores humanos para mediação do engajamento estudantil no aprendizado on-line. Para a avaliação da efetividade da abordagem foram adotadas diretrizes de teste com envolvimentos de tutores humanos a partir das etapas de preparação do sistema, criação de roteiro de atividades e entrevista, aplicação dos testes, coleta, análise e comunicação dos resultados das iterações e propostas de melhoria da abordagem de STI. Os resultados sugerem efetividade na possibilidade de aumentar a produtividade e facilitar as atividades de tutoria. Bem como, houve uma menor percepção de complexidade, peso e consistência ao iterar continuamente o sistema com a atuação de tutores humanos. Portanto, estratégias como a “busca ativa” dos estudantes com baixos níveis de engajamento foi facilitada por algoritmos da abordagem de STI com a contribuição e envolvimento das interações interpessoais de tutores humanos para oferecer aos estudantes experiências de tutoria atrativas e personalizadas.

Downloads

Não há dados estatísticos.

Referências

Abdallah, M., Talib, M. A., Feroz, S., Nasir, Q., Abdalla, H., & Mahfood, B. (2020). Artificial intelligence applications in solid waste management: A systematic research review. Waste Management, 109, pp. 231-246. https://doi.org/10.1016/j.wasman.2020.04.057 [GS Search].

Ahuja, N. J., Dutt, S., Choudhary, S. L., & Kumar, M. (2022). Intelligent Tutoring System in Education for Disabled Learners Using Human–Computer Interaction and Augmented Reality. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2124359 [GS Search].

Alhazmi, A. K., Alhammadi, F., Zain, A. A., Kaed, E., & Ahmed, B. (2023). AI’s Role and Application in Education: Systematic Review. Intelligent Sustainable Systems: Selected Papers of WorldS4 2022, 1, pp. 1-14. https://doi.org/10.1007/978-981-19-7660-5_1 [GS Search].

Alyuz, N., Okur, E., Genc, U., Aslan, S., Tanriover, C., & Esme, A. A. (2017). An unobtrusive and multimodal approach for behavioral engagement detection of students. In: Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education, pp. 26-32. https://doi.org/10.1145/3139513.3139521 [GS Search].

Anwar, A., Haq, I. U., Mian, I. A., Shah, F., Alroobaea, R., Hussain, S., ... & Umar, F. (2022). Applying real-time dynamic scaffolding techniques during tutoring sessions using intelligent tutoring systems. Mobile Information Systems. https://doi.org/10.1155/2022/6006467 [GS Search].

Ashwin, T. S., & Guddeti, R. M. R. (2020). Affective database for e-learning and classroom environments using Indian students’ faces, hand gestures and body postures. Future Generation Computer Systems, v. 108, pp. 334-348. https://doi.org/10.1016/j.future.2020.02.075 [GS Search].

Aslan, S., Alyuz, N., Okur, E., Mete, S. E., Oktay, E., & Esme, A. A. (2018). Effect of emotion-aware interventions on students’ behavioral and emotional states. Educational Technology Research and Development, 66(6), pp. 1399-14130. https://doi.org/10.1007/s11423-018-9589-7 [GS Search].

Baothman, F. A. (2021). An intelligent big data management system using haar algorithm-based Nao agent multisensory communication. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2021/9977751 [GS Search].

Chaiyo, Y.; & Nokham, R. (2017). The effect of Kahoot, Quizizz and Google Forms on the student's perception in the classrooms response system. In 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), pp. 178-182. https://doi.org/10.1109/ICDAMT.2017.7904957 [GS Search].

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two Decades of Artificial Intelligence in Education. Educational Technology & Society, 25(1), pp. 28-47. Disponível em [Link] [GS Search].

Chen, H., Park, H. W., & Breazeal, C. (2020). Teaching and learning with children: Impact of reciprocal peer learning with a social robot on children’s learning and emotive engagement. Computers & Education, v. 150. https://doi.org/10.1016/j.compedu.2020.103836 [GS Search].

Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2022). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence. https://doi.org/10.1016/j.caeai.2022.100118 [GS Search].

Chrysafiadi, K., Virvou, M., Tsihrintzis, G. A., & Hatzilygeroudis, I. (2022). Evaluating the user’s experience, adaptivity and learning outcomes of a fuzzy-based intelligent tutoring system for computer programming for academic students in Greece. Education and Information Technologies, pp. 1-31. https://doi.org/10.1007/s10639-022-11444-3 [GS Search].

Conati, C., Barral, O., Putnam, V., & Rieger, L. (2021). Toward personalized XAI: A case study in intelligent tutoring systems. Artificial intelligence, 298. https://doi.org/10.1016/j.artint.2021.103503 [GS Search].

De Almeida, G. M., Gomes, A. S., de Almeida, J. C., Nogueira, T. J. D. D., Lima, R. M. F., de Melo, T. S., & de Mello, L. A. (2020). Evaluating Entrepreneurial Perceptions on Blended Learning. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Anais IEEE. Disponível em [Link] [GS Search].

D'Mello, S. K.; & Graesser, A. (2012). Language and discourse are powerful signals of student emotions during tutoring. IEEE Transactions on Learning Technologies, 5(4), pp. 304-317. https://doi.org/10.1109/TLT.2012.10 [GS Search].

Echeverria, V., Yang, K., Lawrence, L., Rummel, N., & Aleven, V. (2023). Designing Hybrid Human-AI Orchestration Tools for Individual and Collaborative Activities: A Technology Probe Study. IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2023.3248155 [GS Search].

Ferreira, H. N. M., Brant-Ribeiro, T., Araújo, R. D., Dorça, F. A., & Cattelan, R. G. (2016). An automatic and dynamic student modeling approach for adaptive and intelligent educational systems using ontologies and bayesian networks. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 738-745. https://doi.org/10.1109/ICTAI.2016.0116 [GS Search].

Gao, M., Kortum, P., & Oswald, F. L. (2020). Multi-language toolkit for the system usability scale. International Journal of Human–Computer Interaction, 36(20), pp. 1883-1901. https://doi.org/10.1080/10447318.2020.1801173 [GS Search].

Gilbert, S. & Dorneich, M. (2018). Applying Human-Agent Team Concepts to the Design of Intelligent Team Tutoring Systems. In: Intelligent Tutoring Systems: 14th International Conference, ITS 2018, Montreal, QC, Canada, June 11–15, 2018, Proceedings. Springer. http://doi.org/10.1007/978-3-319-91464-0 [GS Search].

Kar, A. K., Choudhary, S. K., & Singh, V. K. (2022). How can artificial intelligence impact sustainability: A systematic literature review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2022.134120 [GS Search].

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), pp. 583-621. https://doi.org/10.1080/01621459.1952.10483441 [GS Search].

Kurita, T. (2019). Principal component analysis (PCA). Computer Vision: A Reference Guide, pp. 1-4. https://doi.org/10.1007/978-3-030-03243-2_649-1 [GS Search].

Lacerda, D. P., Dresch, A., Proença, A., & Antunes Júnior, J. A. V. (2013). Design Science Research: método de pesquisa para a engenharia de produção. Gestão & produção, 20(4), pp. 741-761. https://doi.org/10.1590/S0104-530X2013005000014 [GS Search].

Ladosha, O. M. (2022). Dynamics of Student Performance in a Foreign Language from the Perspective of the Transition to Distance Learning (statistical analysis). In: 2022 VI International Conference on Information Technologies in Engineering Education (Inforino), pp. 1-5. https://doi.org/10.1109/Inforino53888.2022.9782984 [GS Search].

Latham, A. (2022). Conversational Intelligent Tutoring Systems: The State of the Art. Women in Computational Intelligence: Key Advances and Perspectives on Emerging Topics, pp. 77-101. https://doi.org/10.1007/978-3-030-79092-9_4 [GS Search].

Li, S., Lajoie, S. P., Zheng, J., Wu, H., & Cheng, H. (2021). Automated detection of cognitive engagement to inform the art of staying engaged in problem-solving. Computers & Education, v. 163, pp. 104-114. https://doi.org/10.1016/j.compedu.2020.104114 [GS Search].

Liu, H. L., Wang, T. H., Lin, H. C. K., Lai, C. F., & Huang, Y. M. (2022). The Influence of Affective Feedback Adaptive Learning System on Learning Engagement and Self-Directed Learning. Frontiers in Psychology, 13(1). https://doi.org/10.3389/fpsyg.2022.858411 [GS Search].

Lourenço, D. F., Carmona, E. V., & Lopes, M. H. B de M. (2022). Tradução e adaptação transcultural da System Usability Scale para o português do Brasil. Aquichan, 22(2), pp. 8. https://doi.org/10.5294/aqui.2022.22.2.8 [GS Search].

Maldaner, N., Pozzebon, E., & Dos Santos, T. N. (2022). Proposta de implementação da Computação Afetiva no Sistema Tutor Inteligente MAZK: conciliando emoções com o processo de aprendizagem. RENOTE, 20(2). https://doi.org/10.22456/1679-1916.129153 [GS Search].

Martins, A. I., Rosa, A. F., Queirós, A., Silva, A., & Rocha, N. P. (2015). European Portuguese validation of the system usability scale (SUS). Procedia computer science, v. 67, pp. 293-300. https://doi.org/10.1016/j.procs.2015.09.273 [GS Search].

Mithas, S., Chen, Z. L., Saldanha, T. J., & De Oliveira Silveira, A. (2022). How will artificial intelligence and Industry 4.0 emerging technologies transform operations management?. Production and Operations Management, 31(12), pp. 4475-4487. https://doi.org/10.1111/poms.13864 [GS Search].

Muñoz, K., Mc Kevitt, P., Lunney, T., Noguez, J., & Neri, L. (2011). An emotional student model for game-play adaptation. Entertainment Computing, 2(2), pp. 133-141. https://doi.org/10.1016/j.entcom.2010.12.006 [GS Search].

Nielsen, J. (2000). Why you only need to test with 5 users. Disponível em [Link] [GS Search].

Ogunyemi, A. A., Quaicoe, J. S., & Bauters, M. (2022). Indicators for enhancing learners’ engagement in massive open online courses: A systematic review. Computers and Education Open. https://doi.org/10.1016/j.caeo.2022.100088 [GS Search].

Okur, E., Alyuz, N., Aslan, S., Genc, U., Tanriover, C., & Arslan Esme, A. (2017). Behavioral engagement detection of students in the wild. In: International Conference on Artificial Intelligence in Education. Springer, Cham, pp. 250-261. https://doi.org/10.1007/978-3-319-61425-0_21 [GS Search].

Pereira, A. J., Gomes, A. S., Primo, T. T., da Silva, R. M. A., Rodrigues, R. L., de Campos Filho, A. S., ... & de Melo Júnior, R. P. (2021). Identificação e caracterização de níveis de interação no ensino remoto de emergência na Educação Básica. In: Anais do XXXII Simpósio Brasileiro de Informática na Educação, pp. 145-156. https://doi.org/10.5753/sbie.2021.218498 [GS Search].

Pereira, A. J., Gomes, A. S., & Primo, T. T. (2022). Design de Sistema de Recomendação Educacional: abordagens com Mágico de Oz. In: Anais do XXXIII Simpósio Brasileiro de Informática na Educação, pp. 1184-1195). https://doi.org/10.5753/sbie.2022.225760 [GS Search].

Pereira, A. J., Gomes, A. S., Primo, T. T., Rodrigues, R. L., Júnior, R. P. M., & Moreira, F. (2023). Learning Mediated by Social Network for Education in K-12: Levels of Interaction, Strategies, and Difficulties. Education Sciences, 13(2), pp. 100. https://doi.org/10.3390/educsci13020100 [GS Search].

Pereira, A. J.; Gomes, A. S.; & Primo, T. T. (2023a). Desvendando a Resistência e as Estratégias dos Tutores Humanos para Engajar Estudantes no Aprendizado Online. Cadernos de Educação Tecnologia e Sociedade, 16(3), pp. 551-566. https://doi.org/10.14571/brajets.v16.n3.551-566 [GS Search].

Pereira, A. J., Gomes, A. S., & Primo, T. (2023b). Uma Abordagem de Sistema de Tutoria Inteligente para Cooperação com a Atuação de Tutores Humanos. RENOTE, Porto Alegre, 21(2), pp. 208–219. https://doi.org/10.22456/1679-1916.137742 [GS Search].

Pereira, A. J., Gomes, A. S., Primo, T. T., Queiros, L. M., & Moreira, F. (2024). Anticipating Tutoring Demands Based on Students Difficulties in Online Learning. Lecture Notes in Computer Science. 1ed.: Springer Nature Switzerland, pp. 321-332. http://dx.doi.org/10.1007/978-3-031-61691-4_21 [GS Search].

Pereira, A. J., De Almeida, G. M., Gomes, A. S., & Primo, T. T. (2024a) Identificação de Estilos de Tutoria no Aprendizado Online. In: Simpósio Brasileiro de Informática na Educação (SBIE), 35, 2024, pp. 1336-1348. https://doi.org/10.5753/sbie.2024.242537 [GS Search].

Pereira, A. J., Gomes, A. S., & Primo, T. (2024). Classificação de Interações com Indicadores de Engajamento dos Estudantes no Aprendizado Online. In: Simpósio Brasileiro de Informática na Educação (SBIE), pp. 1574-1586. https://doi.org/10.5753/sbie.2024.242141 [GS Search].

Pereira, A. J., Gomes, A. S., & Primo, T. (2024a). Funcionalidades Emergentes para Tutorias em Ambientes Virtuais de Aprendizagem. Revista iberoamericana de tecnologia en educación y educación en tecnología (en línea), v. 38, pp. 64-71. https://doi.org/10.24215/18509959.38.e6 [GS Search].

Pereira, A. J., Gomes, A. S., & Primo, T. (2025). Paths of Socially Shared Regulation of Learning Students in Online Mediated Activities. RENOTE, Porto Alegre, 22(3), pp. 11–20. http://dx.doi.org/10.22456/1679-1916.144965 [GS Search].

Pham, P., & Wang, J. (2018). Predicting learners’ emotions in mobile MOOC learning via a multimodal intelligent tutor. In: International Conference on Intelligent Tutoring Systems. Springer, Cham, pp. 150-159. https://doi.org/10.1007/978-3-319-91464-0_15 [GS Search].

Phillips, A., Pane, J. F., Reumann-Moore, R., & Shenbanjo, O. (2020). Implementing an adaptive intelligent tutoring system as an instructional supplement. Educational Technology Research and Development, 68(3), pp. 1409-1437. https://doi.org/10.1007/s11423-020-09745-w [GS Search].

Pimentel, M., Filippo, D., & Dos Santos, T. M. (2020). Design Science Research: pesquisa científica atrelada ao design de artefatos. RE@ D-Revista de Educação a Distância e eLearning, 3(1), pp. 37-61. https://doi.org/10.34627/vol3iss1pp37-61 [GS Search].

Pink, S., Gomes, A., Zilse, R., Lucena, R., Pinto, J., Porto, A., ... & De Oliveira, M. D. (2018). Automated and connected? Smartphones and automobility through the global south. Applied Mobilities. https://doi.org/10.1080/23800127.2018.1505263 [GS Search].

Ponticorvo, M., Ferrara, F., Di Fuccio, R., Di Ferdinando, A., & Miglino, O. (2017). SNIFF: A game-based assessment and training tool for the sense of smell. In: Methodologies and Intelligent Systems for Technology Enhanced Learning: 7th International Conference. Springer International Publishin, pp. 126-133. https://doi.org/10.1007/978-3-319-60819-8_15 [GS Search].

Razak, T. R., Ismail, M. H., Fauzi, S. S. M., Gining, R. A. J., & Maskat, R. (2021). A framework to shape the recommender system features based on participatory design and artificial intelligence approaches. IAES International Journal of Artificial Intelligence (IJ-AI), 10(3), pp. 727. https://doi.org/10.11591/ijai.v10.i3.pp727-734 [GS Search].

Reis, S. C., Gomes, A. F., & De Souza, R. S. (2014). Explorando a Rede Social Educacional no ensino de línguas: possibilidades, gêneros e multiletramentos. RENOTE, 12(1). https://doi.org/10.22456/1679-1916.50280 [GS Search].

Ringnér, M. (2008). What is principal component analysis?. Nature biotechnology, 26(3), pp. 303-304. https://doi.org/10.1038/nbt0308-303 [GS Search].

Rogers, Y., Sharp, H., & Preece, J. Design de Interação. Bookman ed. [s.l: s.n.]. [GS Search]

Ruan, S., He, J., Ying, R., Burkle, J., Hakim, D., Wang, A., ... & Landay, J. A. (2020). Supporting children's math learning with feedback-augmented narrative technology.?. In: Proceedings of the Interaction Design and Children Conference, pp. 567-580. https://doi.org/10.1145/3392063.3394400 [GS Search].

Ruiz, N., Yu, H., Allessio, D. A., Jalal, M., Joshi, A., Murray, T., ... & Betke, M. (2022). ATL-BP: a student engagement dataset and model for affect transfer learning for behavior prediction. IEEE Transactions on Biometrics, Behavior, and Identity Science. https://doi.org/10.1109/TBIOM.2022.3210479 [GS Search].

Sadiq, R. B., Safie, N., Abd Rahman, A. H., & Goudarzi, S. (2021). Artificial intelligence maturity model: a systematic literature review. PeerJ Computer Science, 7. https://doi.org/10.7717/peerj-cs.661 [GS Search].

Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Harnessing the Power of AI to Education. In Learning, teaching, and assessment methods for contemporary learners: pedagogy for the digital generation, pp. 311-342. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6734-4_13 [GS Search].

St-Hilaire, F., Vu, D. D., Frau, A., Burns, N., Faraji, F., Potochny, J., ... & Kochmar, E. (2022). A New era: Intelligent tutoring systems will transform online learning for millions. arXiv preprint arXiv:2203.03724. https://doi.org/10.48550/arXiv.2203.03724 [GS Search].

Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), pp. 1893-1924. https://doi.org/10.1108/BPMJ-10-2019-0411 [GS Search].

Wang, W., & Siau, K. (2019). Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: A review and research agenda. Journal of Database Management (JDM), 30(1), pp. 61-79. http://doi.org/10.4018/JDM.2019010104 [GS Search].

Xiao, X., & Wang, J. (2016). Context and cognitive state triggered interventions for mobile MOOC learning. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp.. 378-385. https://doi.org/10.1145/2993148.2993177 [GS Search].

Zafari, M., Bazargani, J. S., Sadeghi-Niaraki, A., & Choi, S. M. (2022). Artificial intelligence applications in K-12 education: A systematic literature review. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3179356 [GS Search].

Arquivos adicionais

Published

2025-04-27

Como Citar

PEREIRA, A. J.; GOMES, A. S.; PRIMO, T. T. Avaliação de Sistema de Tutoria Híbrida Humano-Artificial para Mediação do Engajamento no Aprendizado. Revista Brasileira de Informática na Educação, [S. l.], v. 33, p. 216–246, 2025. DOI: 10.5753/rbie.2025.4988. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/4988. Acesso em: 5 dez. 2025.

Issue

Section

Edição Especial :: Políticas, Qualidade, Desenvolvimento Tecnológico e Inovação

Artigos mais lidos pelo mesmo(s) autor(es)