Tangible Programming in the Physical Environment: TaPrEC + Sphero

Authors

  • Bruna Z. Panaggio Universidade Estadual de Campinas
  • Marleny Luque Carbajal Universidade Estadual de Campinas
  • M. Cecília C. Baranauskas Universidade Estadual de Campinas

DOI:

https://doi.org/10.5753/rbie.2019.27.03.32

Keywords:

Tangible Programming, Computational Thinking, Education, Tangible User Interface, Sphero

Abstract

Despite being familiar with consuming digital media and interacting with new technology, only a minority of students are challenged to create their own technological projects. Computational Thinking is a concept and tool that can help the students to learn some important strategies regarding planning and problem-solving, including technological solutions. One way to introduce young children to the Computational Thinking is through tangible programming environments. Usually, these environments exploit the tangibility at the entrance, i.e., in the construction phase of the program, through Tangible Interfaces. In this paper, we seek to explore the tangibility of the TaPrEC, a tangible programming environment, by extending it to the execution phase, providing feedback in the physical world. We present the integration of TaPrEC with Sphero, a robotic ball that connects to other devices. To evaluate this new system, we conducted 6 workshops with teachers and children in a learning space. The workshops results are encouraging and suggest new possibilities for tangible environments that expand computational thinking skills

Downloads

Download data is not yet available.

References

Baranauskas, M. C. C. e Carbajal, M. L. (2017). The Social Nature of Programming: Children and Fluency. In: Kurosu M. (eds) Human-Computer Interaction. Interaction Contexts. HCI 2017. Lecture Notes in Computer Science, vol 10272. Springer, Cham. doi: 10.1007/978-3-319-58077-7_23. [GS Search]

Baranauskas, M. C. C. e Posada, J. E. G. (2017). Tangible and Shared Storytelling: Searching for the Social Dimension of Constructionism. In Proceedings of the 2017 Conference on Interaction Design and Children (IDC '17). ACM, New York, NY, USA, 193-203. doi: 10.1145/3078072.3079743. [GS Search]

Bradley, M. M. e Lang, P. J. (1994). Measuring Emotion: the self-assessment manikin and the semantic differential. In Journal of behavior therapy and experimental psychiatry, 25 (1), 49-59. [GS Search]

Carbajal, M. L. e Baranauskas, M. C. C. (2015). TaPrEC: Desenvolvendo um Ambiente de Programação Tangível de Baixo Custo para Crianças. In Nuevas Ideas en Informática Educativa TISE. 363-370. [GS Search]

Carroll, L. (1865). Alice's Adventures in Wonderland. MacMillan. [GS Search]

Fan, M., Antle, A. N. e Cramer, E. S. (2016). Design Rationale: Opportunities and Recommendations for Tangible Reading Systems for Children. In Proceedings of the 15th International Conference on Interaction Design and Children (IDC '16). ACM, New York, NY, USA, 101-112. doi: 10.1145/2930674.2930690. [GS Search]

Ishii, H. e Ullmer, B. (1997) Tangible bits: towards seamless interfaces between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems (CHI '97). ACM, New York, NY, USA, 234-241. doi: 10.1145/258549.258715. [GS Search]

Ishii, H. (2008). Tangible bits: beyond pixels. Proceedings of the 2nd international conference on Tangible and Embedded Interaction (TEI ’08). ACM, New York, NY, USA, xv-xxv. doi: 10.1145/1347390.1347392. [GS Search]

Liao, Y. K. C. e Bright, G. W. (1991). Effects of Computer Programming on Cognitive Outcomes: A meta-analysis. Journal of Educational Computing Research, 7(3), 251-268. doi: 10.2190/E53G-HH8K-AJRR-K69M. [GS Search]

Moreira, E. A., Dos Reis, J. C., Baranauskas, M. C. C. (2019). Tangible Artifacts and the Evaluation of Affective States by children. Brazilian Journal of Computers in Education, v. 27, n. 01, p. 58. doi: 10.5753/rbie.2019.27.01.58. [GS Search]

Panaggio, B. Z. e Baranauskas, M. C. C. (2017). Explorando as Possibilidades do Sphero em um Ambiente Educacional. Em Anais do XXIII Workshop de Informática na Escola (WIE 2017). 245-254. doi: 10.5753/cbie.wie.2017.245. [GS Search]

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books. [GS Search]

Posada, J. E. G., Hayashi, E. C. S. e Baranauskas, M. C. C. (2014). On Feelings of Comfort, Motivation and Joy that GUI and TUI Evoke. In Design, User Experience, and Usability. User Experience Design Practice. 273-284. Springer International Publishing. doi: 10.1007/978-3-319-07638-6_27. [GS Search]

Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon, Vol. 9 No. 5, 1–6. doi: 10.1108/10748120110424816. [GS Search]

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B. e Kafai, Y. (2009). Scratch: Programming for All. Commun. ACM 52, 11 (November 2009), 60-67. doi: 10.1145/1592761.1592779. [GS Search]

Rusk, N., Resnick, M., Berg, R. e Pezalla-Granlund, M. (2008). New Pathways into Robotics: Strategies for broadening participation. Journal of Science Education and Technology, 17(1), 59-69. [GS Search]

Sabourin, J., Kosturko, L. e McQuiggan, S. (2016). CodeSnaps: Block-Based Robotic Programming for the Low-Budget Classroom. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE '16). ACM, New York, NY, USA, 242-242. doi: 10.1145/2839509.2850508. [GS Search]

Sánchez, I., Cortés, M., Riekki, J. e Oja. M. (2011). NFC-based interactive learning environments for children. In Proceedings of the 10th International Conference on Interaction Design and Children (IDC '11). ACM, New York, NY, USA, 205-208. doi: 10.1145/1999030.1999062. [GS Search]

Shaer, O. e Hornecker, E. (2010). Tangible User Interfaces: past, present, and future directions. Foundations and Trends in Human-Computer Interaction, vol. 3, no. 12, 1-137. doi: 10.1561/1100000026. [GS Search]

Sipitakiat, A. e Nusen, N. (2012). Robo-Blocks: designing debugging abilities in a tangible programming system for early primary school children. In Proceedings of the 11th International Conference on Interaction Design and Children (IDC '12). ACM, New York, NY, USA, 98-105. doi: 10.1145/2307096.2307108. [GS Search]

Suzuki, H. e Kato, H. (1995). Interaction-level Support for Collaborative Learning: AlgoBlock—an open programming language. In The first international conference on Computer support for collaborative learning (CSCL '95), John L. Schnase and Edward L. Cunnius (Eds.). L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 349-355. doi: 10.3115/222020.222828. [GS Search]

Sylla, C., Branco, P., Coutinho, C. e Coquet, E. (2012). TUIs vs. GUIs: comparing the learning potential with preschoolers. Personal and Ubiquitous Computing, Springer, Vol 16, No. 4, 421-432. doi: 10.1007/s00779-011-0407-z. [GS Search]

Trower, J. e Gray, J. (2015). Blockly Language Creation and Applications: Visual Programming for Media Computation and Bluetooth Robotics Control. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (SIGCSE '15). ACM, New York, NY, USA, 5-5. doi: 10.1145/2676723.2691871. [GS Search]

Valente, J. A., Freire, F. M. P., Arantes, F. L., Viegas d’Abreu, J. V., Amiel, T. e Baranauskas, M. C. C. (2017). Alan Turing tinha Pensamento Computacional? Reflexões sobre um campo em construção. Tecnologias, Sociedade e Conhecimento, 4(1), 7-22. [GS Search]

Wang, D., Qi, Y. e Zhang, L. (2015). A Tangible Programming System Conveying Event Handling Concept. In Proceedings of the 14th International Conference on Interaction Design and Children (IDC '15). ACM, New York, NY, USA, 319-322. doi: 10.1145/2771839.2771906. [GS Search]

Wang, D., Wang, T. e Liu, Z. (2014). A Tangible Programming Tool for Children to Cultivate Computational Thinking. The Scientific World Journal, vol. 2014, Article ID 428080, 10 pages. [GS Search]

Wing, J. M. (2006). Computational Thinking. Commun. ACM 49, 3 (March 2006), 33-35. doi: 10.1145/1118178.1118215. [GS Search]

Wing, J. M. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in Computing. [GS Search]

Zuckerman, O., Arida, S. e Resnick, M. (2005). Extending Tangible Interfaces for Education: digital montessori-inspired manipulatives. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 859-868). ACM. doi: 10.1145/1054972.1055093. [GS Search]

Published

2019-09-01

How to Cite

PANAGGIO, B. Z.; CARBAJAL, M. L.; BARANAUSKAS, M. C. C. Tangible Programming in the Physical Environment: TaPrEC + Sphero. Brazilian Journal of Computers in Education, [S. l.], v. 27, n. 3, p. 32–51, 2019. DOI: 10.5753/rbie.2019.27.03.32. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/4575. Acesso em: 18 oct. 2024.

Issue

Section

Articles

Most read articles by the same author(s)